
 
 
 
 
 
 

31CL β-DELAYED PROTON DECAY AND CLASSICAL NOVA NUCLEOSYNTHESIS 
 
 
 
 
 
 
 

By 
 

 
Tamas Aleksei Budner 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A DISSERTATION 
 

 
Submitted to 

Michigan State University 
in partial fulfillment of the requirements  

for the degree of 
 

Physics – Doctor of Philosophy 
 

2022 



ABSTRACT

Classical novae occur in binary star systems involving a compact white dwarf and a low-mass stellar

companion. In these events, material siphoned from the donor star forms an accretion disk around

the white dwarf. This hydrogen-rich fuel is compressed, heated, and mixed with the outer layers

of the underlying white dwarf until it eventually ignites in a thermonuclear runaway. These violent

explosions eject freshly synthesized nuclear material into the interstellar medium, contributing to

the chemical evolution of the galaxy.

Nova sensitivity studies involving the most massive oxygen-neon (ONe) white dwarfs have

identied the thermonuclear rate of the 30P(, )31S reaction to be the largest remaining source

of nuclear physics uncertainty associated with modeling nucleosynthesis for intermediate-mass

elements in these highly energetic events. Over the past two decades, considerable experimental

eort has been devoted to determining the rate of this proton-capture reaction, but until now, it has

remained essentially unconstrained. A recent 31Cl -delayed  experiment revealed the existence

of a crucial low-energy, ℓ = 0 resonance that could potentially dominate the total 30P(, )31S rate.

At the National Superconducting Cyclotron Laboratory (NSCL), on the campus of Michigan State

University, we developed the Gaseous Detector with Germanium Tagging (GADGET) system in

order to measure the weak, low-energy, -delayed proton decay of 31Cl through this astrophysically

important resonance. In GADGET’s rst dedicated science experiment, we measured the weakest

-delayed charged-particle decay ever reported for resonances below 400 keV. Combining our

experimentally determined proton branching ratio with shell-model calculations of the state’s

lifetime and with past work on other resonances, we computed the total thermonuclear rate for

the 30P(, )31S reaction across peak classical nova temperatures. Our new, recommended rate

was used in fully hydrodynamic nova model simulations to predict the elemental and isotopic

abundances in ONe nova ejecta.

In this dissertation, we will discuss the experimental methods and analysis employed to achieve

our scientic results and investigate their astrophysical impact by comparing to observations from

astronomy. Furthermore, we present the rst-ever detailed look at the 31Cl()30P decay scheme,



reporting preliminary energies and intensities for previously unobserved -delayed proton transi-

tions to 30P excited states.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

The central component of the doctoral thesis project discussed in this dissertation revolves around

the quantication of one property, of a single quantum state, within a particular atomic nucleus,

which is relevant to a specic astrophysical environment. More specically, the purpose of this

research is to determine the probability that an excited and unstable sulfur (S) nucleus will emit a

proton, in order to calculate the rate at which radioactive phosphorus (P) nuclei will capture protons

in the thermonuclear explosions that occur on the surface of certain dead stars. In this rst chapter,

we will provide a short primer on some basic nuclear physics and dene terminology that will be

used throughout. In addition, we wish to contextualize the scientic motivation for this research

within the broader eld of modern nuclear astrophysics.

1.1 A Brief Overview of Nuclear Structure and Radiation

The Atom and Nuclear Notation

Almost all matter with which we interact on a daily basis is comprised of atoms. Every atom

contains a nucleus and at least one electron (−), which are held together by the electrostatic

attraction between the negatively charged electrons and the positively charged nucleus. Figure

1.1, although not drawn to scale, oers a comparison between the diameters of the atom and its

nucleus. While the region in which electrons orbit around the nucleus makes up most of an atom’s

volume, over 99.9% percent of the atomic mass is contained within its nucleus. The nucleus itself

is composed of positively-charged protons () and electrically neutral neutrons (). The number of

protons in a nucleus is given by the atomic number Z and determines the chemical properties of that

particular element. Atomic nuclei of the same chemical element with dierent neutron numbers N

are the various isotopes of that element. The total number of nucleons in a given nucleus is itsmass

number  =  +  . Standard nuclear notation will sometimes refer to a specic nucleus using the
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Figure 1.1: Cartoon diagram of a helium (He) atom. Nucleons are bound systems of three
fundamental particles called quarks; protons have two “up” quarks and one “down” quark, while
neutrons have one up and two down quarks. Figure credit: Contemporary Physics Education
Project, Lawrence Berkeley National Laboratory.

shorthand 
  , where  is the chemical symbol for a given element, but usually the redundant 

subscript is omitted.
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Stable and Unstable Nuclei

Nucleons are tightly bound by the residual eects of the strong interaction, which describes the

behavior of the elementary particles within each nucleon over very small distances and is the

strongest of the four fundamental forces in nature. Stable nuclei are less massive than the sum of

their individual nucleons alone, and their nuclear binding energy is dened as the energy required

to break up a given nucleus into its constituent protons and neutrons. Using perhaps the most

famous equation in all of physics,  = 2, which relates the energy of an object to its mass at

rest, we can express the binding energy of a particular nucleus with mass ( , ) as

BE( , ) = 
2 + 

2 − ( , )2, (1.1)

where 2 = 8.98755179 × 1016 m2/s2 is the speed of light squared,  = 938.27203(8) MeV/2

is the mass of the proton, and  = 939.56536(8) MeV/2 is the mass of the neutron [1]. In the

energy regime relevant for nuclear physics, it is often convenient to express energies in units of

mega- (MeV) or kiloelectron-volts (keV), where 1 MeV = 103 keV = 106 eV.

Similar to how the periodic table organizes chemical elements by increasing order in  , the

chart of nuclides shown in Figure 1.2 plots  versus  for every known nucleus; rows and columns

are outlined at the so-called magic numbers, which correspond to the “closure” of nuclear shells.

Similar to, although distinctly dierent from, how electrons ll atomic orbitals, individual protons

and neutrons will occupy the lowest-energy conguration available, following the Pauli exclusion

principle. Despite the fact that vast majority of atoms on Earth are stable, Figure 1.2 clearly shows

that most known nuclei are not, and the stability of an atomic nucleus is determined by its relative

number of protons and neutrons. Only isotopes with the largest binding energy per nucleon (BE/)

are to be found in the so-called valley of stability.

Unstable nuclei are said to be radioactive and undergo nuclear decay by emitting radiation, of

which there are a variety of types. Nuclear decay is a fundamentally random process, but it follows

a simple, exponential trend. The number of radioactive nuclei  at time  is given by
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Figure 1.2: The chart of nuclides. Stable nuclei are represented by black squares, while
radioactive nuclei are color-coded by their primary decay modes: + or electron capture (blue), −
(pink),  (yellow), ssion (green), and spontaneous proton (orange) or neutron (purple) emission.
Figure credit: National Nuclear Data Center (NNDC), Brookhaven National Laboratory.

 () = 0
−/, (1.2)

where 0 =  ( = 0) is the number of radioactive nuclei present when they are rst counted, and

 is the lifetime of the radioactive nucleus. The lifetime is simply the average time that a nucleus

takes to decay. Typically, when discussing how radioactive a nucleus is, we quote its half-life

1/2 = ln 2, which is the time required for half of the radioactive nuclei within an isotopically pure

sample decay [ (1/2) = 0/2].
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Weak Decays

Radioactive nuclei located below this valley in Figure 1.2 are neutron-rich and typically undergo

− decay, whereby a neutron turns into a proton, emitting an electron and antineutrino () in the

process:


  →

+1 
′ + − +  (1.3)

Electrons and neutrinos () are both fundamental particles called leptons and have a lepton number

of  = 1, while their antiparticles have  = −1. Thus, emission of the antineutrino during − decay

conserves this quantity (Δ = 0). Similarly, on the proton-rich, or neutron-decient, side of the

chart, nuclei typically undergo + decay, in which a proton turns into a neutron:


  →

−1 
′ + + +  (1.4)

In this case, the electron’s antiparticle the positron (+) is emitted instead, along with a neutrino

this time, again conserving lepton number. A related decay process is electron capture, in which a

proton-rich nucleus captures one of its innermost electrons and converts a proton into a neutron:


  + − →

−1 
′ +  (1.5)

These three decay processes are all caused by the other short-range nuclear force, appropriately

named theweak interaction, due to its relatively weak strength compared to the to the strong nuclear

and electromagnetic forces.

Alpha Decay and Nuclear Fission

Not all decay modes are mediated by the weak interaction. For example,  decay typically occurs

in heavy nuclei and is governed by competition between the two stronger forces. Even though the

attractive nuclear force is generally much more intense over short ranges than the electric repulsion

between the protons, the strength of the former drops quickly over the distance of ≈ 10−15 m, while

5



the latter increases in proportion to 2 and has an unlimited range. Thus,  > 210 nuclei have such

large radii that the strong nuclear force can barely counterbalance the proton-proton repulsion [2].

Qualitatively, the emission of a tightly bound 4He nucleus, or  particle, can be thought to occur

as a means of increasing the stability and reducing the size of the nucleus:


  →−4

−2 
′ +  (1.6)

While it is energetically possible for a heavy nucleus to reduce the amount of energy stored in

its mass via  decay, the kinetic energy dissipated by this disintegration is quite small compared

to the large potential energy barrier it must overcome in order to escape the nucleus. This is only

possible due to a phenomenon called quantum tunneling, which we will discuss further in Chapter

2. A similar process is responsible for the eect of nuclear ssion, in which a very heavy nucleus

splits into two smaller, more tightly bound nuclei.

Nuclear Reactions and Nucleon Emission

As seen in Figure 1.3, the binding energy per nucleon begins to decline with increasing mass

number beyond iron (Fe) and nickel (Ni), which are the most tightly bound nuclei. This means

a nuclear reaction that fuses two light nuclei with a combined mass of  < 58 can result in the

release of energy. In fact, it is this nuclear fusion process that drives the energy production of stars

like our Sun. Nuclear processes, such as fusion reactions and radioactive decay, cause a change in

the amount of energy that stored in the nuclear masses. The dierence between the nal binding

energies and the initial binding energies of the nuclei involved in these processes is called the

Q-value:

 =
∑


BE(  ,   ) −
∑


BE(, ) =
∑


 (, )2 −
∑


  (  ,   )2 (1.7)

Spontaneous decays always have a positive -value, otherwise the nucleus would be stable and

remain unchanged. The -value of a nuclear reaction can be positive or negative. Reactions for
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Figure 1.3: Binding energy per nucleon plotted over mass number. Nuclear processes that result
in nuclei becoming more stable tend to release energy. Figure credit: HyperPhysics, Carl Rod
Nave.

which  > 0 release energy and are said to be exothermic, while endothermic reactions ( < 0)

require energy from the environment to be added into the nuclear system in order to proceed. The

energy required to remove a single nucleon from the nucleus is called the one-nucleon separation

energy. The proton separation energy is simply dened as

 = − = BE( , ) − BE( ,  − 1), (1.8)

and the neutron separation energy is

 = − = BE( , ) − BE( − 1, ). (1.9)

Extremely proton-rich nuclei for which  < 0 are said to be proton unbound; extremely neutron-

rich nuclei for which  < 0 are said to be neutron unbound. Exotic nuclei of this kind are only
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found far away from stability at the nuclear drip lines, beyond which the addition of an extra neutron

or proton would simply “drip” away, not forming a bound nucleus.

Nuclear Levels and Gamma Decay

This brings us to arguably the last piece of introductory knowledge necessary for understanding a

majority of the nuclear physics discussed throughout this dissertation: the concept of excited states.

So far, we have implicitly assumed that the nucleus in question is occupying its ground state, the

lowest possible energy conguration of its nucleons. However, just as the electrons in an atom can

be excited to higher atomic energy levels, so too can the nucleus be excited. Moreover, driving a

current through a chemically pure gas at low pressure, like in a neon (Ne) light xture, results in

electronic excitations, which upon their decay, result in the emission of photons of visible light,

whose characteristic color is indicative of the energy they radiate away as the atom descends the

discrete levels. Usually, these atomic states decay within 10 ns to 10 ms (10−9 − 10−4 s) [3].

Analogously, a nucleus that is the product of a reaction, the daughter of radioactive decay, or

simply participates in a suciently energetic scattering interaction, will initially populate a nuclear

conguration with a discrete energy level well above its ground state. However, the excitation

energies required to populated these various nuclear levels are on the order of 105 − 106 times

higher than that of atomic energy levels. Thus, the photons they emit, known as  rays, are well

outside the visible spectrum and are usually given in keV orMeV units. Furthermore, their lifetimes

are frequently  10−12 s. By convention, nuclear levels are usually referenced by their lifetime

compared to the half-lives quoted for charged-particle decays.

The lifetime of a nuclear level will often depend on its total angular momentum  = +, where
, or ℓ, is the orbital angular momentum and  is the spin. These are conserved, discrete quantities

for which the analog in classical physics is not particularly useful in understanding their quantum

interpretation. Nuclear levels also have either even or odd parity ( = ±1). If the wave function

corresponding to a particular nucleon conguration is identical under coordinate transformation,

it is said to have even parity ( = +), but if it is a mirror image under reection then it has odd
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parity ( = −). The total parity of the quantum state of a nucleus is the product of over all nucleons

 = Π (−1)ℓ .
Lighter nuclei have fewer possible nuclear congurations and thus have sparse and relatively

simple level structures. However, massive nuclei with many nucleons often have a high density of

nuclear levels and very complicated decay schemes, where highly excited states will emit multiple

 rays in a cascade of transitions between levels of decreasing energy until they reach the ground

state. If an nuclear level is populated such that its excitation energy is greater than the nucleon

separation energy for that nucleus ( > ,), there is some probability that this level will decay by

spontaneous nucleon emission instead. This is particularly relevant for understanding the research

topic of this dissertation specically, as well as nuclear reactions in stars more broadly.

1.2 On the Origin of Elements

Nuclear astrophysics is an interdisciplinary eld which includes areas of study in computational

astrophysics, observational astronomy, as well as both experimental and theoretical nuclear physics.

Each of these dierent academic disciplines provide unique insights that further our understanding

of the universe on the largest and smallest of scales. Because of the diversity of research interests

between these elds, collaboration and open exchange is extremely important in order to determine

what information is needed from its individual contributors to best serve the scientic interests of

the community as a whole.

Ultimately, the goal of the nuclear astrophysics community is to address fundamental questions

about the universe which include, but are not limited to the following: Where did the chemical

elements that constitute the natural world originate? What are the individual contributions of

various astrophysical environments? How do the properties of nuclei aect the life cycles of stars?

How might we utilize radioactive nuclei in the cosmos to better understand the evolution of our

galaxy? What is the underlying structure of neutron stars, and what is the nature of dense nuclear

matter? The astrophysical motivation for the original research contained in this thesis dissertation

pertains to the chemical and isotopic abundances produced in certain stellar explosions. Thus, in

this section, we will focus primarily on the rst two questions, in order to contextualize our current
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understanding of the universe’s chemical evolution.

In the Beginning

The process of nucleosynthesis refers to the nuclear mechanisms by which the chemical elements

and their various isotopes were forged. Nearly all of the complex chemistry that permeates our

nearly 14-billion-year-old universe was made possible due to the nucleosynthesis occurring in

stars. Immediately following the Big Bang, the universe was too hot for any nuclei to form and was

instead likely lled with a hot, densemixture of electrons, quark-gluon plasma, and potentially other

elementary particles. As the universe rapidly expanded and cooled, the rst protons, or hydrogen

(H) nuclei, were able to condense, colliding with the high-electrons to form neutrons once the

universe reached a balmy ∼10 billion degrees (K) [4]. By the time it cooled to a temperature of

∼1 billion K, the rst nucleosynthesis occurred between 1H and free neutrons to form deuterium

nuclei (2H), also known as deuterons (). These quickly fused to form the extremely stable 4He.

Some other reactions participating in early Big Bang nucleosynthesis involved , , 3He, and 4He

produced trace amounts of the rst lithium (Li) nuclei. However, given that the half-life of the

neutron is only about 15 minutes [5; 6], all the unreacted neutrons quickly decayed away, leaving

only the remaining H and He nuclei to form the rst stars. As shown in Figure 1.4, basically all the

H and He we observe in our Solar System today were produced shortly after the Big Bang. Since

then, about 2% of those primordial nuclei have been processed into the all the heavier chemical

elements we observe today [7; 8].
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The Life of Stars

The rst stars did not for some ∼100 million years after the inception of the universe. The average

temperature of the gas was too high for gravity, the weakest of the four fundamental forces of nature,

to overcome the thermal pressure of the gas. At rst, this prevented gas clouds from clumping

together and collapsing to form stars, but eventually, once the universe reached ∼100 K, the rst

generations of stars were able to form. This is was the only time period in our universe’s history

in which star formation favored stellar masses greater than that of our Sun. This is because the

diversity of heavier chemical elements in our modern universe, with their higher degrees of freedom

in atomic and molecular transitions, allow kinetic energy that would otherwise be conserved in the

random motion of simpler atoms to be radiated away, cooling down the gas clouds more rapidly.

This meant that in the early universe, more material was needed to clump together in order for the

gravitational force to be strong enough to collapse a gas cloud into a star.

Eventually, when the rst star did form, only H and He were available for nucleosynthesis,

which proceeded quite slowly. Essentially the only reaction available was  +  →  + + + ,
which requires the weak interaction to turn a proton into a neutron and is extremely unlikely to

occur. Since this - fusion does not produce enough energy to power the star, the star begins

to collapse in on itself [10]. However, in the process of stellar contraction, the nuclear fuel heats

up, causing any He produced via H fusion process to be converted relatively quickly to carbon (C)

through the triple- reaction [11]. Once C was present, this kicked o the carbon-nitrogen-oxygen

(CNO) cycle, acting as a catalyst for the processing of 1H into 4He, as shown in Figure 1.5. The

CNO cycle prevents stellar collapse and begins producing more N and O as well [12].

The core of a star will continue to fuse H into He until all of the H fuel has been exhausted. This

happens much more quickly in high-mass stars because, despite having more H nuclei to fuse than

low-mass stars, their stronger gravity produces higher temperatures in their interior, accelerating

the rate at which these thermonuclear reactions occur. This makes high-mass stars more luminous

and shorter-lived than low-mass stars. H-burning in a star with the mass of our Sun (⊙) lasts for

10 billion years, while a star with ten times that of a solar mass will exhaust its H reserves in 25

12



Figure 1.5: The CNO cycle. Figure credit: Borb.

million years; a 30-⊙ star will complete the H-burning stage in only 6 million years [13]. Once

H burning in the core ceases, the star can not longer support its own weight and begins to contract,

causing the core to heat up and increasing the probability for He fusion reactions to take place.

At ∼10 K, He burning ignites to synthesize C and O; the star stops contracting once the outward

thermal radiation pressure and the inward force of gravity reach equilibrium [9].

The Death of Stars: With a Bang

Provided that the star is massive enough (8⊙), this cycle of nuclear burning in the core until fuel

is exhausted, followed by stellar contraction, and the ignition of a new source of nucleosynthesis, can
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repeat for progressively heavier elements. All the while, lighter elements in the shells surrounding

the core can continue to burn as well. Once 12C nuclei start fusing together, the nuclear reactions

become more varied, forming not only 24Mg, but also 23Na+ and 20Ne+, among others [14]. At

the next stage, highly energetic photons can begin to break apart Ne nuclei via photodisintegration,

which facilitates the -capture reaction 20Ne(, )24Mg. During the phase of C and Ne burning,

leftover O from theHe-burning stage remains inert, but once the stellar interior reaches temperatures

1 billion K, it too ignites [10; 14].

Once the last of the O fuel has been exhausted, what is left in the core is mainly silicon (Si).

The star contracts once again, bringing the core to a temperature of 3 billion K, but even at these

extreme temperatures, the electrostatic repulsion from the  = 14 nuclei prevents the Si nuclei from

fusing together. The photodisintegration reactions (, ) and (, ) involving intermediate-mass

nuclei within the stellar interior produce  and  particles, which are then able to overcome the

Coulomb barrier of Si and other intermediate-mass elements, like sulfur (S). These (, ) and

(, ) reactions drive the Si-burning stage towards the iron peak elements, including Fe and Ni

[15]. In order of increasing binding energy per nucleon, 56Fe, 58Fe, and 62Ni are the mostly tightly

bound nuclei in nature [16]; beyond this mass region, nucleosynthesis is endothermic.

Each successive burning stage takes less time to complete than the previous. This is because

nuclear reactions become less exothermic, and more of the energy that is released will be carried

away from the core by neutrinos. The thermonuclear reactions that produce the thermal radiation

pressure necessary to the support the star under the crushing weight of its own gravity, increasingly

consume more nuclear fuel. In the case of a 15-⊙ star, core H burning lasts on the order of

millions of years, while C burning lasts only a few thousand years. By the time the star reaches the

stage of O burning, it ends within a few weeks, and the Si burning that follows only lasts several

days [17]. Near the end of its life, the massive star has accumulated a 1.4-⊙ Si-burning core,

surrounded by a series intermittent burning shells: O, Ne, C, He, and H, listed in order of increasing

radial distance from the core. Most of these shells contain at least half a Sun’s worth (0.5 ⊙) of

processed, nucleosynthetic material ready to be injected into the cosmos [9].
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As the Si-burning stage terminates near the end of a massive star’s life cycle, the stellar core

can no longer produce enough energy from nuclear reactions to oppose its collective gravity; the

collapse is inevitable. The core contracts slowly atrst, but as the iron-peak nuclei photodisintegrate

and the temperature reaches that of the early universe, protons and high-energy electrons can

start synthesizing neutrons again. These processes dissipate energy from the core, accelerating

its collapse. The details surrounding the physical processes governing these extremely massive,

energetic, and complicated events called core-collapse supernovae (CCSNe) are an ongoing subject

of research in computational astrophysics [18; 19; 20]. Nevertheless, it is believed the rapid change

in density causes a shock wave to propagate out through the outer shells, driving one last burst of

nucleosynthetic activity in the nal moments of the massive star’s violent death [21] and ejecting

all that enriched nuclear material processed over a stellar lifetime into space.

What remains of the core depends on its mass at the time of the explosion. Most stars with

initial masses >30 ⊙ should lead to black holes [22], localized regions of spacetime so dense

that their immense gravity prevents any matter or light from escaping [23]. Black holes do not

directly contribute to the chemical evolution of galaxy but actively delete nuclear matter from

existence. However, only about ∼10% of supernovae come from stars with initial masses >20 ⊙

[24]. The consensus is that the majority of stars in the mass range 8⊙ <  < 20⊙ will result

in a supernova that leaves behind an ultradense remnant of the collapsed core called a neutron star

[22], which likely play a prominent role in the nucleosynthesis of the heaviest elements found in

nature called the rapid neutron-capture process, or r-process.

The Death of Stars: With a Whimper

In stars with masses 8 ⊙, the nucleosynthesis reactions powering their evolution typically cease

after the production of C and O, or perhaps Mg and Ne, in slightly more massive stars; these

elements are tightly bound gravitationally to the stellar core [9]. Since energy is no longer being

generated in the core to oppose the inward pull of gravity, the core contracts, but the temperature

never gets high enough to ignite the next stage of nuclear burning. Eventually, this contraction
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is halted by the degeneracy pressure. The stellar core becomes so compressed that the fermions

cannot be packed any more tightly without violating the Pauli exclusion principle. Having shrunk

to a fraction of its original size, its gravitational hold on the outer layers of the star gradually

weakens. As this happens, the stellar envelope is slowly ejected over the course of >100 thousand

years, along with the He, C, and N synthesized in its shell burnings [9], leaving behind a hot, dense

remnant of the stellar core; these objects are called white dwarfs.

This is the ultimate fate of stars like our Sun. Without nuclear reactions to power their evolution

or energetic particles to dissipate their energy, white dwarfs remain dormant indenitely. Although

not active, they are still very hot and will cool extremely slowly, emitting their thermal energy

via emission of black-body radiation. This process will take longer than the current age of the

universe, but eventually, once a white dwarf radiates away the last of its energy, it will reach thermal

equilibrium with whatever still remains of the interstellar medium and become invisible within the

void of space: a black dwarf.

While low-mass stars do not undergo such dramatic deaths as their more massive counterparts,

they still play an important role in processing nuclear material. For one, they live much longer

than massive stars do, and they are much more common in our modern universe [25]. In fact, they

are responsible for synthesizing a substantial fraction of the heavier elements in the universe. This

is possible because temperatures only need to be high enough for nuclear reactions that release

neutrons, not for nuclei with large numbers of charged particles to merge [9]. Neutrons in low-

mass stars are not produced by high-energy collisions between protons and electrons, but dying

low-mass stars can produce free neutrons in their He-burning shells under certain circumstances

[25]. Through the process of convection, fresh material from the unreacted, H-rich envelope can

be mixed into the He-burning shell, and the combination of 4He, 1H, and 12C enables a series of

nuclear reactions that produce 16O, releasing a neutron in the process.

These free neutrons readily fuse with Fe and other seed nuclei forged by the generation of stars

that preceded them. A seed nucleus typically captures a neutron every few weeks to months [26].

If a neutron-capture results in a product nucleus that is radioactive, it will almost certainly undergo
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− decay before it can capture another nucleon, thus slowly synthesizing heavier nuclei close to

the valley of stability. Due to the long timescales over which this process occurs, it is called the

slow neutron-capture process, or s-process. However, this tedious mechanism is not the only way

that low-mass stars can contribute to the chemical enrichment of the galaxy. In fact, even their

white-dwarf corpses can play an important role in explosive nucleosynthesis, provided that they

are found in a binary star.

Classical Novae

Depicted in Figure 1.6, a classical nova is a luminous eruption that occurs in a binary system

that includes a white dwarf and a nondegenerate stellar companion, which orbit around a common

center of mass. As the active companion star evolves, its radius swells, and as it begins to overow

its Roche lobe, the white dwarf can begin to siphon material from the H-rich donor to form an

accretion disk around its surface [27]. As this accreted layer builds up on the surface of the compact

white dwarf, the density and temperature of the compressed material rise, increasing the rate of

nuclear burning. The stability of this nuclear burning process is very sensitive to the mass of the

underlying white dwarf as well as the rate of accretion. Once a critical mass is reached, the layer

becomes unstable, triggering a thermonuclear runaway event [28; 29; 30]. The energy released

causes the H-rich envelope to expand tremendously, leading to its ejection and often dredging up

dense nuclear material from deeper layers of white dwarf in the process [31].

The standard paradigm of classical nova models is one driven exclusively by thermal emission

from the hot white dwarf. After the thermonuclear runaway, the ejected shell of gas expands

into the surrounding environment at ∼102 − 103 km/s [31]. They are most identiable as optical

transients, where the intensity of their visible light is observed to rise rapidly to a maximum and

then decay over the timescale of days or months [32]. However, as their ejecta expand and dilute,

they become increasingly transparent to radiation of shorter wavelengths, and their spectral energy

distribution shifts to the predominantly ultraviolet (UV) part of the spectrum [33]. Eventually the

photosphere recedes suciently inward that the white dwarf is visible in the low-energy part of
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Figure 1.6: Artist’s depiction of a classical nova. Figure credit: astroart.org, David A. Hardy.

the X-ray spectrum, sustained by residual nuclear burning for weeks or potentially even years [34].

Many novae also form dust grains in their ejecta, which are revealed by sudden increases in their

infrared (IR) emission [35]. This dust formation occurs rapidly and nova grains grow to large sizes

(∼1 s) compared to dust from the intersteller medium [36; 37].

Derived from the Latin stella nova, meaning “new star,” the misnomer originates from Danish

astronomer Tycho Brahe’s 1573 book entitled De nova stella, in which he reports the observation

of what appeared to be a new star in the night sky; this stellar event has since been identied as a

supernova, named B Cassiopeiae (SN 1572) [38]. Unlike supernovae, which typically result in the

destruction of their stellar host, nova events will often recur on the timescale of years or decades.

Although estimates of the galactic nova rate have varied widely over the years [39; 40], by all

accounts, these events are common. Their frequency is ≈ 20 − 70 eruptions per year in the Milky
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Way, with about a dozen observed annually [41]. This detection rate has increased in recent years

and is likely to continue to do so with more time dedicated to nding them using state-of-the-art

telescopes [42]. Still, many of these observations are reported by amateur astronomers as classical

novae are among the brightest transients in the night sky.

Despite their storied role in the history of astronomy, the abundance of observational nova

data, and signicant progress in computational ability, many open questions surrounding classical

novae remain. We cannot begin to address them all here, but in this dissertation, we will provide

meaningful constraints on nuclear uncertainties associatedwithmodeling explosive nucleosynthesis

in the thermonuclear runaway of classical novae.

19



CHAPTER 2

THE 30P(, )31S REACTION

2.1 Eects on Astronomical Observables

Nova Nucleosynthesis

Classical novae are the second-most common type of thermonuclear eruptions in the galaxy,

following Type I X-ray bursts which occur in stellar binaries involving a neutron star instead of

a white dwarf [43]. In spite of this, they only process a small fraction of the interstellar matter

throughout the Milky Way, contributing very little in the way of galactic dust condensed from

stellar outows [44]. Nevertheless, simulations and observational evidence both suggest that novae

are responsible for the overproduction of certain nuclei such as 7Li [45; 46], 13C, 15N, and 17O

[29; 47; 48; 49; 50; 51], perhaps accounting for a signicant fraction of their galactic content [52].

Radioactive  emitters are also produced in novae [53; 54; 55; 49; 56; 51]. For example, most novae

are thought to produce the long-lived radionuclide 26Al and could be responsible for up to 30% of

its presence in the Milky Way [57]. Some novae are also expected to produce 22Na, whose shorter

half-life might enable the detection of nova sites via this radionuclide’s unique -decay signature,

depending on how much of it survives explosive nucleosynthesis [58]. Even heavier species like
31P, 32S, 33S, and 35Cl have been reported to originate in novae as well [49; 51], but the accuracy

and precision of modeling the chemical composition of their ejecta is constrained by uncertainties

in the thermonuclear rates of the nuclear reactions that participate in nova nucleosynthesis.

Hydrodynamic simulations are used to model explosive nucleosynthesis in classical novae.

During the thermonuclear runaway, nuclei participate in a complex reaction network of competing

weak interactions, such as + decay and electron capture, versus proton- and -capture reactions,

as shown in Figure 2.1. The rates at which these nuclear processes occur aect the path of

nucleosynthesis in classical novae, which is close enough to stability such that many of these decay
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Figure 2.1: Path of nucleosynthesis in an ONe nova involving a 1.35-⊙ white dwarf, assuming
a 50% mixing ratio between the H-rich envelope and the underlying white dwarf material.
Nuclides shown in dark blue are stable, while light blue squares correspond to radioactive nuclei.
Figure credit: Ref. [59].

and reaction rates can be determined experimentally. For this reason, many of the relevant nuclear

reactions in novae have been suciently constrained for modeling the chemical composition of

their ejecta. However, sensitivity studies of ONe novae involving the most massive white dwarfs

indicate that 30P(, )31S is the largest remaining source of nuclear uncertainty for the synthesis of

intermediate-mass elements [60; 61].

The 2.5-minute half-life of 30P is on the order of the thermonuclear runaway event, making it

a waiting-point nucleus. Thus, the 30P(, )31S reaction serves as a bottleneck to the production

of  > 30 in ONe novae. Furthermore, its thermonuclear rate aects the chemical and isotopic

abundances of the processed nuclear material that ONe novae contribute to the galaxy. These
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observables can also inform our understanding of individual novae and their properties.

Presolar Grains

Perhaps the most interesting eect of the 30P(, )31S reaction on the isotopic ratios of nova ejecta

is related to the classication of a handful of unidentied presolar grains recovered from certain

meteorites; an example is depicted in Figure 2.2. These are tiny bits of stardust, often only a few

microns in length, that were ejected as hot plasma from their original astrophysical source into

interstellar space before cooling and condensing into crystalline granules. These grains were then

incorporated into the molecular cloud and mixed with the surrounding material, which eventually

condensed to form the Solar System [62]. Thus, they are said to be “presolar” because they were

forged before the formation of the Solar System and can be identied by isotopic ratios that are well

outside the expected range for terrestrial rocks and meteoroids formed in the early Solar System.

The discovery and detailed analysis of these grains has opened up a new eld within astronomy,

providing unique insights into the formation of the Solar System as well as the chemical evolution

of the Milky Way [63; 64; 65]. Several dierent types of presolar grains have been identied,

including silicon carbide (SiC), graphite (C), diamond (C), silicon nitride (Si3N4), and various

silicate and oxide compounds [66], but to date, none have been conrmed originating in classical

novae.

SiC grains are among the most well-studied presolar grains and can be classied into distinct

populations according to their stellar birthplace [67]. Almost all of these grains come from

the outows of asymptotic giant branch (AGB) stars, with the 93% “mainstream” population

originating in low-mass stars of this variety [68; 69; 70]. Another 4 − 5% are classied as AB

grains, characterized by low 12C:13C ratios, and while several types of stars have been proposed

as progenitors of AB grains, the majority likely originated in C-rich, so-called J-type stars [71].

Y and Z grains make up about 1% each, whose origins are linked to low-metallicity AGB stars

[72; 73; 74], while X grains account for the remaining 1% and are distinguished by their large

excesses in 44Ca and 28Si, evidence they formed in the ejecta of supernovae [75; 76]. However, ion
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Figure 2.2: Electron microscope image of a SiC presolar. Photo credit: J. Huth, A. Besmehn, and
J. Kodolányi, Max Planck Institute for Chemistry.

microprobe isotopic analysis of several rare SiC grains, as well as a few anamolous graphite grains,

has revealed isotopic signatures indicative of potential nova origins [77; 78].

Classical novae have previously been implicated in some of the isotopic anomalies found in

meteorites, despite the fact that they are not major contributors to the chemical evolution of the

galaxy. Although about 30 − 40% of novae are known to produce dust some 20 − 100 days after

their initial outburst [79], the argument for the existence of nova grains has relied primarily on low
20Ne:22Ne ratios in certain graphite grains, which could be attributed to the decay 22Na, potentially

indicative of nova nucleosynthesis [80; 81; 82]. In contrast, these unusual grains have low 12C:13C

ratios, extremely low 14N:15N ratios, and high 26Al:27Al ratios, all qualitatively consistent with

theoretical predictions for both CO and ONe nova models [77]. The C and N ratios are plotted in

Figure 4.20 for grain data taken from the Presolar Database at Washington Unviersity in St. Louis

[83; 84].

These candidate nova grains also exhibit large excesses in 30Si. The Si isotopic ratios of various

presolar grains are shown in Figure 2.4. Generally speaking, 29Si:28Si and 30Si:28Si ratios of nova

ejecta increase with white dwarf mass. Thus, all CO nova models predict close-to or lower-than

solar 29Si:28Si ratios as well as close-to solar 30Si:28Si ratios. While nucleosynthesis is mostly

23



Figure 2.3: Isotopic ratios for plotted for C and N. Candidate nova grains are circled in magenta.
Figure credit: Ref. [85].

constrained to the CNO mass region for CO novae, the higher peak temperatures in ONe novae

and the more abundant “seed” nuclei from beyond the CNO mass region lead to the synthesis of

intermediate-mass elements. So while all ONe nova models predict close-to or lower-than solar
29Si:28Si ratios and models for white dwarf masses ≤1.15 predict close-to or lower-than solar
30Si:28Si ratios, ONe nova models for white dwarf masses ≥1.25 ⊙ predict large excesses in 30Si

[60].

The conclusion that these unidentied grains are from ONe novae ejecta, however, is controver-

sial for two main reasons. First, not only are ONe novae less common than CO novae, they are also

less prolic dust producers. Second, the isotopic abundance of 30Si in ONe nova ejecta is vastly
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Figure 2.4: Isotopic ratios for plotted for Si. Candidate nova grains are circled in magenta.
Figure credit: Ref. [85].

over-predicted by simulations compared to grain data. To quantitatively reproduce the observed
30Si:28Si ratios, one must assume some unknown mixing process between the freshly synthesized,
30Si-enriched material and over 10 times as much unprocessed, isotopically close-to-solar material

before the grains formed [60]. Because of these complications, in recent years, there have been

eorts to explain SiC grain formation in the ejecta of CO novae without invoking this dilution

process [79; 86]. While one-dimensional (1D), hydrodynamic simulations represent the current

state-of-the-art capabilities of nova modeling and generally agree with astronomical observations

of elemental abundances, large systematic uncertainties remain [60]. For one, the parameter space

of all relevant input variables is quite large and includes factors such as the composition of the white

dwarf, the peak temperature and density, the explosive timescales, any possible dilution of ejecta

after the outburst, as well as potentially the biggest unknown, how the accreted material from the

donor star mixes with the outer layers of the WD [79]. So far, multidimensional investigations into

this mixing problem have not been successful in reproducing the gross properties of nova outbursts
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[77], and to make matters worse, the lack of convective mixing in these parameterized calculations

leads to overestimating the inuence of nuclear uncertainties [60]. These theoretical challenges

cannot be directly eliminated by nuclear physics experiments, but these measurements can be

employed to reduce uncertainties associated with reaction rates that confound model predictions.

Currently, most theoreticalmodels rely on theHauser-Feshbach statistical method for evaluating

the 30P(, )31S rate. When estimating the eect of nuclear uncertainties on their predictions,

modelers will often vary this rate by arbitrary factors of 10. Tightening the error bars on this rate

could substantially constrain the range of predicted 30Si:28Si ratios for candidate nova grains. If

proton-capture on 30P is particularly rapid in ONe novae, this will enable increased nucleosynthesis

of  > 30 nuclides. However, if this reaction proceeds relatively slowly on the timescales of

the thermonuclear runaway, the radioactive 30P will primarily + decay to stable 30Si, leading to

excesses in ONe nova ejecta.

Nuclear Thermometers and Mixing Meters

Observational studies using IR, UV, and optical spectroscopy are able to identify elemental abun-

dances within the ejecta shells surrounding nova sites [44; 87; 88]. The ejected gas and dust from

nova outbursts consist of white dwarf matter and the accreted material from the companion star,

which have been processed by explosive H-burning. The chemical makeup of this ejecta provides

information about the composition of the underlying white dwarf as well as the thermonuclear

runaway event, including the peak temperature achieved and the expansion rate of the accreted

envelope. Thus, chemical abundances can be used to constrain models of stellar explosions [89].

Hydrodynamic simulations using the 1D code shiva were performed for a range of white dwarf

masses suggest that several abundance ratios are quite sensitive to temperature and may be useful

nuclear thermometers for constraining the peak temperatures achieved in novae [52]. The hydro-

dynamic models were used to calculate temperature-density proles across all mass zones of the

envelope. This prole served as input for Monte Carlo post-processing nuclear reaction network

calculations to assess the impact of thermonuclear rate uncertainties.
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Figure 2.5: Ratios of elemental abundances, given in terms of their mass fractions, plotted as
function of peak temperature achieved in hydrodynamic nova model simulations. Figure credit:
Ref. [90].

The best candidate thermometers exhibit steep, monotonic dependence on peak temperature

and include N:O, N:Al, S:Al, O:Na, Na:Al, O:P, and P:Al. These are plotted in Figure 2.5. The

sensitivity of these thermometers to variation in thermonuclear rates has been investigated using

post-processing nucleosynthesis calculations, and while N:O, N:Al, O:Na, and Na:Al are robust to

these uncertainties, O:S, S:Al, O:P, and P:Al strongly inuenced by the poorly constrained rate of

the 30P(, )31S reaction. Thus, determining this thermonuclear rate would reduce uncertainties

associated with these nuclear thermometers and allow a more precise, accurate determination of

peak nova temperatures.

The peak temperature achieved in a nova strongly depends on the mass of the underlying white

dwarf and its initial luminosity. It also is inuenced by the mass, metallicity, and accretion rate

of the disk [90]. The fact that both the processed, H-rich fuel and material from the outer layers

27



of the white dwarf can be observed in nova ejecta suggests that there must be mixing between the

two stellar sources before the thermonuclear runaway, but the mechanism by which this occurs is

not well-understood [91; 92; 93]. However, the extent to which the envelope mixes with the outer

layers of the dense white dwarf aects the chemical abundances of the observed nova ejecta. Thus,

like thermometers, certain elemental abundances can be used as nuclear mixing meters if there

is a steep, monotonic relationship between the abundance ratio and the mixing fraction, which is

dened as mass of the outer white dwarf matter that has been mixed as a fraction of the envelope

[94].

Nova simulations have been performed for three dierent mixing fractions 25 − 75% at four

dierent white dwarf masses (1.15 − 1.35 ⊙) with a xed initial luminosity and accretion rate.

Just as in the studies investigating nuclear thermometers, hydrodynamic simulations were used to

evaluate the temperature-density across the active burning regions in the nova. Nuclear reaction

network calculations were used to quantify the aect of reaction rate uncertainties on the nal

ejecta abundances. The results of these calculations, as shown in Figure 2.6, identied several

useful mixing meters for ONe novae, including ΣCNO:H, Ne:H, Mg:H, Al:H, and Si:H. While

most of these ratios were found to be robust with respect to thermonuclear rate uncertainties, again

the 30P(, )31S reaction was implicated in the uncertainty of Si:H ratios. The error bars on each

elemental abundance are largely unchanged between the top and bottom panels in Figure 2.6, with

the exception of Si, since it is highly sensitive to the rate of proton capture on 30P. This further

motivates the experimental determination of this critical thermonuclear rate for constraining ONe

nova models.

2.2 Thermonuclear Reaction Rate Formalism

Here, we follow a derivation provided in Christian Iliadis’s Nuclear Physics of Stars [15] to arrive

at a general formula for the total thermonuclear rate of a non-specic nuclear reaction. A more

detailed description of reaction theory and its applications to nucleosynthesis can be found there,

as well as in Nuclear Reactions for Astrophysics by Thompson and Nunes [95].

In nuclear physics, often the most fundamental quantity used to describe the probability that
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Figure 2.6: Elemental abundances, given in terms of their mass fraction relative to H, predicted
in hydrodynamic nova model simulations. The three dierent marker shapes/colors represent the
mixing ratios between the underlying white dwarf material and the H-rich envelope. Top panel:
Error bars only include variation due to changes in peak temperature. Bottom panel: Error bars
include variation due to changes in peak temperature as well as uncertainties in thermonuclear
reaction rates. Figure credit: [94].

29



two nuclei will participate in a reaction is the cross section . Consider the simple case of beam

particles impinging on a target area  at a constant rate /. The cross section is dened as

the ratio between the number of reactions per unit time / and the product of the number of

nonoverlapping target nuclei  times the beam ux:

 ≡ /
 · /() . (2.1)

Thus, we can write the rate at which nuclear reactions occur within some volume  in terms of the

cross section and the relative velocity between the beam particle and the target nucleus:


 ·  =  · 

 ·  = 






. (2.2)

In a stellar environment, neither the target nor the projectile particles are ever truly at rest, and

the nuclear reaction cross section depends on the relative velocity between the two nuclei. For a

reaction involving four species 1 + 2 → 3 + 4, we can dene our reaction rate 12 ≡ /() and
write it in terms of the number densities for the target nucleus (1 ≡ /) and projectile nucleus

(2 ≡ /) as

12 = 12(). (2.3)

In principle, the relative velocity between projectile and target nuclei can be any positive real

number, whichwe can represent as an arbitrary probability distribution  (), where
 ∞
0  () = 1.

Generalizing Equation (2.3) over this velocity distribution, we can dene the reaction rate per

particle pair as

12 = 12

∫ ∞

0
  ()() ≡ 12⟨⟩12. (2.4)

However, in practice, the most useful quantity for describing the frequency of nuclear reactions in

stellar environments is the thermonuclear reaction rate ⟨⟩12, whose units are cm3/mol/s and

where  is Avogadro’s number.
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In most astrophysical cases, particles within a stellar plasma are not degenerate and move at

nonrelativistic speeds [96]. Thus, their motion in thermal equilibrium can be described using the

Maxwell-Boltzmann velocity distribution

 () =
 

2

3/2
−

2/(2)42, (2.5)

where  = 12/(1 +2) is the reduced mass of the two-body system,  = 8.6173 × 10−5 eV/K

is the Boltzmann constant, and  is the temperature of the stellar plasma. It can be shown that if

the velocity distributions of both species of interacting particles are Maxwellian, then the relative

velocities between the two species must also follow this distribution [14]. In the nonrelativistic

limit,  = 2/2, and thus / = , allowing us to write the energy distribution as1

 () =
 

2

3/2
−/4

2









2

=
2√


1
()3/2

√
−/  ,

(2.6)

which we can then plug back into Equation 2.4. After multiplying by our normalization constant

, we arrive at a generalized thermonuclear rate for particle-induced reactions:

⟨⟩12 =
√

8




()3/2
∫ ∞

0
()−/  . (2.7)

The Gamow Window

Consider a beam of protons impinging on a target of 30P. According to Equation 2.1, if the beam rate,

target area, and total number of target nuclei are known, an experiment measuring the number of

induced 30P(, )31S reactions over a xed period of time could be performed to determine the total

cross section, and the total thermonuclear rate could be calculated using Equation 2.7. However,

the 2.5-min half-life of unstable 30P means using it as a target in a stable beam experiment is nearly

impossible. Inverse kinematics experiments involving a radioactive beam of 30P incident on a

hydrogen target are also problematic because, due to their refractory chemical nature, 30P beams
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are dicult to produce with sucient intensity at the relevant energies using either fragmentation

or isotope separation on-line (ISOL) techniques. Due to the energy dependence of the nuclear cross

section and the statistical velocity distribution of the stellar plasma, there is a relatively small range

of energies that are relevant for determining a thermonuclear rate; this is known as the Gamow

window.

The transmission coecient ̂ describes the probability of a quantum particle tunneling through

a potential barrier and can be determined by solving the Schrödinger equation. For the simple case

of an s-wave (ℓ = 0) scattering on a time-independent potential, the radial equation becomes

2()
2

+ 2
ℏ2

[ − ()]() = 0. (2.8)

In the case of charged-particle reactions, over short distances, the attractive nuclear force between

the target and projectile can be described as a square-well with some width 0 and depth 0, but

for  > 0, there exists a repulsive Coulomb potential as shown in Figure 2.7. Using this potential

to solve Equation 2.8 in the low-energy limit, the leading order term for the s-wave transmission

coecient is known as the Gamow factor

̂ ≈ exp

−2

ℏ




2
01

2

≡ −2, (2.9)

where we dene the Sommerfeld parameter . The Gamow window describes the overlap between

this probability density function and the Maxwell-Boltzmann distribution as shown in Figure 2.8.

The Gamow peak is the energy at which the thermonuclear reactions are most likely to occur and

can be determined by taking the derivative of the product of these two functions:






exp


−2

ℏ




2
01

2 − 




=0

= 0

=exp

−2

ℏ




20
01

2 − 0


 


ℏ




2
01

2−3/2
0 − 1




.

(2.10)

Thus, the peak of the Gamow window occurs at
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Figure 2.7: Diagram of the potential energy diagram for a charged particle with energy 
approaching a nucleus as a function of radial distance  (). At long ranges ( > 0), the
projectile experiences repulsive Coulomb force, while over short ranges ( < 0), the residual
nuclear force dominates and results in an attractive potential. A projectile need not have energy
 >  to overcome the Coulomb barrier given the possibility of quantum tunneling. Figure
credit: Ref. [15]
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(2.11)

Given a temperature 9 in units of gigakelvin (GK), this numerical expression returns the resonance

energy in units of MeV at which the Gamow distribution is at a maximum for a given thermonuclear

reaction.

While this distribution is asymmetric, it can be approximated with a Gaussian function of the

same maximum amplitude. Rewriting the Gamow distribution in terms of 0,
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Figure 2.8: Arbitrary Gamow window. Dashed curves correspond to the Maxwell-Boltzmann
distribution and the probability density for penetrating the Coulomb barrier. The Gamow window,
plotted as a solid black curve, represents a product of these two probability distributions. Figure
credit: Ref. [15].
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and enforcing the condition that the curvatures must agree at  = 0,

2
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(2.13)

Solving for the width of the Gamow window peak, we nd
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Δ = 4
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(2.14)

The peak temperature range for ONe classical novae is often reported to be peak = 0.1 − 0.4

GK [97], so even across a wide range of temperatures, the Gamow peak for 30P(, )31S lies within

a relatively small range at low resonance energies: 159 − 399 keV. Still, even for  = 0.4 GK,

this resonance energy is much higher than  = 34 keV, which suggests most of the particles

participating in this reaction have relative velocities sampled from the high-energy tail of Maxwell-

Boltzmann distribution.

However, the Gamow window is only a rough guide for identifying the energy regime most

likely to be important for constraining a nuclear reaction rate. This is because nuclear reactions

can proceed in various ways, and the existence of a resonance state may greatly enhance the total

thermonuclear rate, even if the resonance energy lies outside the Gamow window.

Radiative Proton Capture

The process of radiative proton capture involves some target nucleus  capturing a proton to form

a +1( + 1)∗ product nucleus in an excited state. That excitation energy promptly radiates away

via a cascade of one or more  ray emissions, leaving behind the +1( + 1) nucleus in its ground

state conguration. Radiative proton capture reactions occur when the projectile and target nuclei

get close enough such that they can interact via the attractive nuclear potential shown in Figure

2.7. In a stellar plasma, this typically happens when the center-of-mass energy of the two bodies is

within the Gamow window. A nonresonant, direct capture reaction occurs when the target nucleus

captures a proton into a bound state of the product nucleus. If a nonresonant reaction does occur,

a photon is simultaneously emitted, with a  energy equal to the dierence between the excitation

energy of the newly-formed +1( + 1)∗ bound state and the summed kinetic energy of both the

projectile and target nucleus prior to the reaction. In general, the cross section for this direct capture
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Figure 2.9: Cartoon diagram of resonant proton capture for the 30P(, )31S reaction.

process varies smoothly as a function of energy across the Gamow window, but cross sections may

sharply increase at particular energies due to resonant capture.

In this context, resonances correspond to nuclear levels with excitation energies above the

proton separation energy ( > ), such that they are proton unbound. The presence of these

resonances states can enhance the synthesis or facilitate the destruction of certain nuclei more

eciently, depending our their properties and the stellar environment. Each resonance state has a

characteristic mean energy and width. The resonance energy is dened by the dierence between

the excitation energy of the proton-unbound state and the proton separation energy ( =  − ).
Due to the Coulomb barrier, as resonance energy increases, so does the proton decay partial width

Γ relative to the partial  decay width Γ. These quantities are proportional to the probability of a

proton-unbound state decaying via proton emission or  emission, respectively. The sum over all

decay channels is the total decay width of the state Γ =

 Γ and is inversely proportional to the

lifetime Γ = ℏ/.
When the combined center-of-mass energy of a free proton and nearby  nucleus are close
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to the resonance energy of a +1( + 1)∗ state, the nuclear reaction cross section is signicantly

enhanced. In this case, as shown in Figure 2.9, the proton and target nucleus form a compound

nucleuswhich can either re-emit the proton or  decay to lower energy levels of the product nucleus,

having undergone radiative capture. If there are other decay modes available, it is also possible for

the nucleus to proceed through those channels instead. Using the one-level, Breit-Wigner formalism

to describe narrow, isolated resonances, we can express the resonant reaction cross section as

BW() = 2

4
(2 + 1)

(2 + 1) (2 + 1)
ΓΓ

( − )2 + Γ2/4 , (2.15)

where  = 2ℏ/

2 is the de Broglie wavelength,  is the spin of the resonance,  is the spin

of the projectile, and  is the spin of the target nucleus. For the sake of brevity, we can dene

 = (2 + 1)/[(2 + 1) (2 + 1)]. This Breit-Wigner model is only valid for narrow, isolated

resonances. Resonances are said to be “narrow” if their partial widths are approximately constant

across the total width of the resonance, and theymust be “isolated” in the sense that their amplitudes

cannot overlap signicantly with any nearby resonances. Since both the nuclear level density and

average resonance width tend to increase as a function of excitation energy, this model is most

useful for relatively low-energy resonances just above the proton separation energy.

Plugging the Breit-Wigner cross section from Equation 2.15 into Equation 2.7 for the total

thermonuclear reaction rate and simplifying,

⟨⟩12 =
√
2ℏ2

()3/2
∫ ∞

0

ΓΓ
( − )2 + Γ2/4

−/  . (2.16)

Assuming the resonance is suciently narrow, the Maxwell-Boltzmann factor should be constant

over the total width of the state. Thus, it can be pulled out of the integrand with the approximation

 =  , allowing us to evaluate the remaining integral analytically:
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(2.17)

Dening the quantity  ≡ ΓΓ/Γ, we can now express the thermonuclear reaction rate in terms of

the resonance strength  for a single level. The contributions of multiple narrow resonances can

be summed incoherently to yield the total thermonuclear rate:

⟨⟩12 =

2


3/2
ℏ2

∑


() −/ . (2.18)

Due to relatively low level density of 31S and limited peak temperatures achieved in classical

novae, the thermonuclear rate of the 30P(, )31S reaction is expected to be dominated by radiative

proton captures into a small number of low-energy resonances. For this reason, over the past two

decades, signicant experimental and theoretical eort has been dedicated to identifying these

resonances and constraining their properties.

2.3 Indirect Methods for Reaction Studies

Because it is not possible to measure 30P(, )31S directly at present, many experimental attempts

to determine the thermonuclear rate have employed clever, indirect techniques for constraining

the properties of 31S levels within the relevant energy regime near the Gamow window. In the

years since this reaction was rst identied as being particularly important for modeling nova

nucleosynthesis, numerous experimental investigations have been performed, and it is likely that

all of the most important resonances have been observed. Some have been suciently constrained

for utilization in a resonant reaction rate calculation. The current status of all relevant 31S excited

states is discussed in Chapter 4. Here we will introduce some of the indirect methods employed in

to study the 30P(, )31S reaction.
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Single-Nucleon Transfer Reactions

As the name suggests, this type of reaction involves the transfer of a single nucleon between the light,

projectile nucleus and the heavy, target nucleus such that the ejectile emitted from the compound

nucleus diers in mass number from the incoming projectile by Δ = ±1. For example, in the case

of 31S, excited states have been populated using the forward reactions 32S(, )31S [98; 99; 100],
32S(3He,)31S [101], and 32S(, )31S [102; 103].

The resulting spectra from the charged ejectiles correspond to the energy transferred between

the reactants in the formation of the compound nucleus, allowing the excitation energies of the

levels populated in the 31S* to be deduced. The energies of these ejectiles can be measured by a

Si detector array, like in the cases of Refs. [98; 100], or with the use of magnetic spectrographs,

which measure the kinetic energy of the charged particles by the magnitude of their deection

through a strong magnetic eld, as employed in Refs. [101; 102; 103; 99; 100]. By performing

these reaction measurements at many dierent angles, the relative intensity of the observed peaks

reveal an angular distribution. To investigate the spin and parity assignments of the nal state in

the recoil nucleus, Distorted-wave Born approximation (DWBA) calculations are often utilized to

t the data for multiple values of orbital angular momentum ℓ, constraining possible values of 

for a given level.

Single-nucleon transfer reaction measurements can also be employed using inverse kinematics,

by impinging a heavy beam on a light target. The reaction 30P(, )31S was used to measure

the angle-integrated cross sections for levels above the proton emission threshold and deduce

spectroscopic factors of these states [104].

Charge-Exchange Reactions

Charge-exchange reactions are similar to single-nucleon transfer reactions in that both the incoming

projectile and outgoing ejectile are slightly dierent light nuclei. However, instead of the total mass

number of the reacting nuclei changing, protons and neutrons are eectively swapped in the process.

This occurs in the reaction 31P(3He,)31S, which has been measured to probe some of the same
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resonances of astrophysical interest [105; 102; 106; 107]. The angular distribution of the ejected

triton,  in this case, as well as angular momentum selection rules can be used to constrain the spin

and parity of resonance states populated through charge exchange.

In-Beam Gamma-Ray Spectroscopy

Experiments utilizing -ray spectroscopy involve populating highly excited states in the nucleus of

interest and observing as many  rays as possible that are emitted during the cascade of  decay

transitions between dierent energy levels before reaching the ground state. This requires a high

detection eciency in order to collect as many statistics as possible, as well as a precise detector

resolution in both energy and time. This is important for the purposes of dierentiating  rays of

similar energies as well as accurate identication of coincidences between  events.

Experiments performed at the same accelerator facility using the same Gammasphere array

employed two dierent reactions, 12C(20Ne, )31S [108; 109] and 28Si(, )31S [110; 111], to

populate high-spin states in 31S. Both double- (-) and triple-coincidences (--) were used to

construct detailed decay schemes, which were then compared to the level structure of the mirror

nucleus 31P for the purpose of constraining spin and parity assignments.

Beta Decay Spectroscopy

As discussed in Chapter 1,  decay is a form of radioactivity mitigated by the weak interaction

that results in the emission of either an -− or -+ pair. It also follows the selection rules

for Fermi and Gamow-Teller transitions [14; 112; 113]. The emission of two spin-1/2 particles

may cause a change in angular momentum of Δ = 0,±1 between the nal and initial state; larger

changes in angular momentum are said to be “forbidden” and, although technically not impossible,

are highly suppressed. In the case of 31Cl, which has a  = 3/2+ ground state, its + decay

almost exclusively populates  = 1/2+, 3/2+, 5/2+ levels in 31S. This is useful for placing strong

spin-parity constraints on newly observed states and is particularly relevant for the astrophysically
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important 30P(, )31S reaction, since these form the ℓ = 0, 1 resonances expected to dominate the

total thermonuclear rate in ONe classical novae.

The process of -delayed particle emission occurs when a radioactive nucleus undergoes 

decay and populates an excited state in the daughter nucleus with an excitation energy above the

particle-emission threshold, which can then spontaneously decay via particle emission. The rst

observation of 31Cl -delayed proton decaywas reported over 40 years ago [114], the implications of

which were presented in further detail by Refs. [115; 116]. However, it was not until 2006 that 31Cl

+ decay was investigated on the basis of astrophysical motivations [117]. Using three double-sided

Si strip detectors (DSSDs) to measure proton energies in the laboratory frame, Kankainen et al.

observed all of the same -delayed proton decays reported by Ref. [116], including several more.

In addition, inclusion of a high-purity Ge detector (HPGe) allowed for the conclusive identication

of the 31Cl ground state’s isobaric analog in 31S through measurement of its  decay. Another

experiment, also using solid-state Si detectors, measured the intensities and lab-frame energies of
31Cl -delayed proton decays; these results were reported in a 2011 doctoral thesis dissertation but

were never published in a peer-reviewed journal [118]. However, this measurement has provided the

best-resolution, highest-statistics spectrum of the 31Cl()30P decay sequence yet, and its reported

intensities and energies (converted to the center-of-mass frame) were essentially adopted unaltered

in the latest evaluation of recommended literature values for -delayed charged-particle decays

[119].

Prior to the original research contained within this dissertation, the most recent investigation

into the 30P(, )31S reaction using + decay spectroscopy involved a -delayed  ray measurement

performed at NSCL. A radioactive beam of 31Clwas implanted into a plastic scintillator, surrounded

by the Clovershare Array, which consisted of nine HPGe detectors. Subsequent analysis of the

data collected during this experiment resulted in the most comprehensive study of the 31Cl()31S

decay scheme to date [120]. In addition to the discovery of many new 31S levels and previously

unobserved  transitions, Bennett et al. crucially identied the existence of a proton-unbound state

with spin-parity  = 3/2+ and an excitation energy of  = 6390.2(7) keV [121].
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The most recent atomic mass evaluation reports that the proton emission threshold for 31S

to be  = 6130.65(24) keV [16], which means that the resonance energy is  = 6390.2(7) −
6130.65(24) keV = 259.6(7) keV, placing this resonance in close proximity to the Gamow peak

for ONe nova temperatures during thermonuclear runaway. In addition, since the ground state of
30P is  = 1+ [122], proton capture to a  = 3/2+ level forms an ℓ = 0 resonance, which means
30P(, )31S is be unimpeded by a centrifugal barrier through this channel. For these reasons,

we hypothesize that the ℓ = 0, 260-keV resonance will dominate the thermonuclear rate for this

reaction of interest in ONe novae. However, in order to calculate the strength of this resonance

and, by extension, its contribution to the total rate, we need to determine its proton branching ratio

Γ/Γ.
The reason why 31Cl -delayed proton decays through this resonance have not been observed in

the previous measurements is likely due to their use of o-the-shelf Si diodes. Solid-state detectors

made of semiconducting material are plagued by the large + backgrounds that are especially

prominent at low energies. This has motivated the development of a new detector for measuring

weak, low-energy, -delayed protons decays. This experimental system and its application to the

scientic problem at hand is the topic of the next chapter.
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CHAPTER 3

EXPERIMENTAL INVESTIGATION

3.1 GADGET: Gaseous Detector with Germanium Tagging

TheGADGET systemwas specically developed tomeasureweak, low-energy, -delayed, charged-

particle decays for the purpose of constraining thermonuclear reaction rates relevant to the study of

explosive nucleosynthesis. It was designed for conducting radioactive beam experiments using the

exotic ion beams provided by the Coupled Cyclotron Facility at NSCL. GADGET’s namesake refers

to the coupling of the existing Segmented Germanium Array (SeGA) at NSCL to the new Proton

Detector, a gaseous, proportional counter. The former consists of an array of high-resolution,

high-eciency  ray detectors. The latter was designed, built, tested, and commissioned at NSCL

as part of Phase I of the GADGET system.

Micro-Pattern Gaseous Detectors

Since the invention of the Geiger-Müller counter in 1928, for almost a century, gas-lled radiation

detectors have been employed in a wide variety of applications. The MICRO-MEsh GAs Structure

(MICROMEGAS) was developed for high-rate experiments and proved to be a cost-eective

solution to the spatial-resolution problem encountered by the multi-wire proportional chambers

(MWPC) that preceded them. MICROMEGAS detectors were also able to provide higher signal

amplication than the micro-strip gas chambers (MSGC) built to solve the same problem [123].

The interactions of charged particles with matter are quite complicated, but the semi-classical

Bethe-Bloch expression is often used to approximate the stopping power of charged particles in a

gas. Qualitatively, we can express the dierential energy loss per unit distance as

Δ
Δ

∝ − 

2
, (3.1)
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where  is the charge of the particle, and  is its velocity as a fraction of the speed of light [124].

This can be calculated using the relation

 =

√
1 − 1

2
, (3.2)

where the relativistic  can be written in terms of a particle’s kinetic energy  and its rest mass

0:

 =

02

+ 1. (3.3)

For minimum ionizing radiation such as muons or  particles, a kinetic energy of 1 MeV

implies a speed of 94% the speed of light, while for the much heavier proton of the same energy

 ≈ 0.046. This implies that faster, lighter  particles hardly deposit any energy in the gas at all

over short distances and have much longer tracks, compared to the slower, heavier protons and

 particles. Because fast-moving  particles do not deposit their full energy in the volume of a

gas-lled proportional counter, their contribution to the background is suppressed in -delayed

proton decay experiments that utilize such devices. Furthermore, a high-gain, gaseous amplier

based on the MICROMEGAS design results in high detection eciency for low-energy protons,

while maintaining good resolution. This was demonstrated in the measurement of 23Al -delayed

proton decays at ≈ 200 keV with a full width at half maximum (FWHM) resolution of 7% using the

AstroBox instrument at Texas A&M University’s Cyclotron Insitute [125]. The Proton Detector

at NSCL was designed in collaboration with the developers of AstroBox in order to replicate its

technical performance as well as to adapt the gaseous detection system such that it ts snugly

inside the existing SeGA structure. The ability of GADGET to acquire high statistics particle-

coincidences is useful for determining which states in 30P are populated by 31Cl -delayed proton

decay, which is important for understanding nova nucleosynthesis.
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Principle of Operation

The schematic drawing in Figure 3.1 depicts the basic operating principles of the Proton Detector.

Once the radioactive beam particles have been produced from the accelerator facility and delivered

to the experimental setup, they exit the beam line and implant inside the Proton Detector. After

stopping in the ll gas, they quickly thermalize, diusing via Brownian motion until they decay

from essentially at rest. Usually,  decay is promptly followed by one or more  decays, which can

be detected by SeGA, as the daughter nucleus deexcites to its ground state. However, if the  decay

populates a proton-unbound state in the daughter nucleus, a proton may be emitted. The decay

proton and the recoil nucleus deposit almost all their kinetic energy into the ll gas by colliding

with neutral atoms to create electron-ion pairs. Under the inuence of a uniform electric eld, these

primary ionization electrons drift at a constant velocity towards the amplication region, where

they encounter an electric eld on the order of 100 times stronger than the eld in the drift region.

This causes a Townsend avalanche of secondary electrons which induce a detectable signal on the

detector pads [126; 127]. Thus, the size of the readout voltage is proportional to the center-of-mass

energy of the proton decay. The fast-moving  particles have long tracks and deposit only some of

their energy within the detector’s active volume, suppressing their contribution to background in

the nal -delayed proton spectrum.

Proton Detector Design

Figure 3.2 contains a partially labeled diagram of the Proton Detector. Most of the detector volume

is contained within a cylindrical tube made of stainless steel. The chamber is ≈ 49 mm long and

16.5 cm in diameter. On the upstream end of the detector, relative to the direction of the incoming

beam, a 1.5-m-thick Kapton® windowwith a 50.8-mm diameter allows the beam particles to enter

the drift tube. Also attached to that end cap are four outlet lines, which allow gas to ow out of the

detector, as well as a high-voltage electrical feedthrough, which is used to apply a negative bias to

the cathode. The Proton Detector’s cathode provides the large voltage needed to create an electric

eld along the length of the drift tube. The uniformity of the electric eld is preserved by a eld
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Figure 3.1: Diagram of the Proton Detector’s principle of operation.

cage.

The eld cage consists of a thin, exible polyimide lm wrapped into a cylinder, onto which

101 equipotential copper rings have been printed along the inside. The rst, most-upstream ring

is in electrical contact with the cathode, and the electric potential is stepped down over the length

of the cage through a series of resistors. The eld cage is surrounded by an insulating polyether

ether ketone (PEEK) material, with cutouts allowing space for the resistors. At the downstream

end of the eld cage, there is an electronic gating grid that protects sensitive electrical components

from the large charges produced during beam implantation. Between the gating grid and the

MICROMEGAS detector pad plane, there is a pair of copper rings separated by insulating PEEK

spacers. The ring closer to the gating grid is in electrical contact with the last ring of the eld

cage on the low-voltage end, while the downstream ring is grounded. This preserves the electric
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Figure 3.2: Mechanical design drawing of the Proton Detector.

drift eld between the gating grid and the MICROMEGAS, which is responsible for amplifying the

detector signal.

On the downstream end of the detector, there is a ange with a 22.9-cm diameter to which the

other end cap connects. Similar to the upstream end, this ange has four, thin tubes connected to

it which allow for lling the detector with gas. In addition to the gas inlets, a single, thick tube is

connected to the downstream ange for more ecient vacuum pumping as well as for diagnostic

and safety purposes. An additional ange is attached to this end which contains the electrical

feedthroughs necessary for biasing the positive anode and the gating grid. The end cap that seals

the downstream end of the detector is the printed circuit board for routing electronic signals and

the MICROMEGAS.

Designed and manufactured at CERN, the MICROMEGAS consists of a stainless steel, mi-
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Figure 3.3: Diagram of the detector pad plane. The MICROMEGAS is segmented into 13
charge-sensitive pads labeled A-M. The dashed blue circle represents the projection of the beam
entrance window onto the pad plane, and the red arrows correspond to proton tracks. The size of
the arrows, labeled by their energies in units of keV, are scaled in proportion to their calculated
ranges in P10 gas at a pressure of 800 Torr.

croscopic mesh structure, which is electrically grounded, and is supported by insulating pillars of

PEEK material that separate it from the positively biased anode plane. This 128-m gap is the

amplication region that provides the detector with adjustable gain. A schematic drawing of the pad

plane is shown in Figure 3.3. The anode itself is segmented into 13 gold-plated, copper electrodes.

The ve inner pads measure the energy of charged-particle decays, while the eight outer pads are

used to veto events whose full energy is not measured by the active, inner pads.

The gating grid was installed in the Proton Detector between the eld cage and the MI-

CROMEGAS structure, covering the entire area of the charge-sensitive pad plane. The grid is

made of an insulating ring, on which 60 gold-plated, copper wires have been soldered, each 20 m

in diameter and spaced in 2-mm increments. When the grid is operated in the transparent mode,

the wires are held at the same potential (-225 V) as the nal copper ring in the eld cage before

the MICROMEGAS, allowing ionization electrons to enter the amplication region. In the opaque
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Figure 3.4: The MICROMEGAS being operated in “pancake” mode. By shortening the active
volume of the gas, we were able to use an 55Fe X-ray source to characterize the performance of
individual detector pads.

mode, the wires are held at a positive potential (+150 V) relative to the micro-mesh, which reverses

the direction of the drift eld between the gating grid and the MICROMEGAS. This prevents the

large ionization currents created during beam implantation from damaging the channels in the

preamplier, which is necessary for signal processing. When running experiments, the gating grid

is operated in cycles synchronized with beam delivery, alternating between opaque mode during

beam implantation, and transparent mode, when beam is not being implanted.

Gas Handling System

A used gas handling system, provided by the NSCL detector lab, was initially utilized during the

testing stages of the Proton Detector development. This was necessary in order to characterize

the individual MICROMEGAS pads using a “pancake” version of the detector, depicted in Figure

3.4. We also used this gas handling system during the the GADGET commissioning experiment.

However, gas purity aects the quality of the detector response and, by extension, the resolution

of the nal proton spectrum. Before the rst dedicated science experiment, a new, customized gas
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Figure 3.5: Gas handling systems used to operating the Proton Detector. Left: Older version of
the gas handling system borrowed from the NSCL detector lab. Right: Custom-built gas handling
system for GADGET.

handling system was constructed to be used in the 31Cl -delayed proton decay measurement as

well as all subsequent GADGET experiments. It was designed to t on the same portable rack used

to house the electronics modules and remote controls system for GADGET. A comparison between

the old and new gas handling systems is shown in Figure 3.5.

In collaboration with the mechanical engineering department at NSCL, this new gas handling

system was developed for functionality during radioactive beam experiments as well as during

oine systematic tests. Figure 3.6 provides a detailed schematic drawing of the gas handling

system. While GADGET does not operate by mixing gases in situ, two gas sources can be

connected to the gas handling system simultaneously. Typically, one gas line is connected to a

bottle containing P10, a mixture of 90% Ar and 10% CH4, which is commonly used to ll gaseous

amplication detectors. Another gas line containing N2 is usually connected to the detector; this

feature was included in order to ush the detector and gas handling system with an inexpensive,

inert gas. This was both for safety purposes when operating the systems with marginally ammable

gases as well as for keeping the detector clean and pressurizing the system when it is not in use.
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The gas pressure inside the detector chamber is regulated by a PC PC99 integrated downstream

pressure controller with amass owmeter fromMKS Instruments. The current operating procedure

for controlling this device involves communicating with the mass ow controller over Ethernet

connection through an Internet Explorer session on a Windows laptop. The MKS Instruments

software interface was used to set and record the gas pressure as well as for monitoring the rate of

gas owing through the meter. The ow rate can only be changed by manually adjusting a metering

value, which is physically attached to the gas handling system. At the end opposite to the gas

sources, an electric vacuum pump causes gas to ow through through the system and disposes of

the spent gas into the experimental vault’s exhaust line, which is then vented to an outdoor area.

A rough pumping line is connected to the downstream ange of the Proton Detector. This allows

for more ecient pumping of the detector when placing the system under vacuum. Connected to

this rough pumping line is a pressure gauge which gives an independent reading of the pressure

closer to the detector chamber. There is also a safety relief value that will vent over-pressured gas

into the experimental vault. The valve is set manually at a nominal pressure above the operating

pressure of the Proton Detector. For the commissioning and rst dedicated science experiment

with GADGET, we chose to operate the system above atmospheric pressure at 800 Torr. Thus, any

small leaks in the experimental setup would cause gas to ow out of the system and prevent air in

the atmosphere from contaminating the vessel.

Additionally, a radioactive source-holder is connected to an isolated loop in the plumbing of

the gas handling system. By inserting a radioactive sample, such as 232U or 228Th, which contain
220Rn gas in their decay chains, the -emitting isotope can diuse out of the source holder and

into the Proton Detector. Detecting these charged-particle decays has been useful in testing the

experimental setup without the use of a radioactive beam. Amore detailed discussion of the design,

testing, and commissioning of the Proton Detector and the GADGET system can be found in Ref.

[128].
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SeGA: Segmented Germanium Array

SeGA is a high-resolution, -ray detection system with good geometric eciency. The array

consists of 18 segmented, coaxial high-purity germanium (HPGe) crystals. Ge is a semiconductor,

meaning its atomic structure causes the bulk material to have an electrical conductivity somewhere

between that of a true, metallic conductor and a non-metallic insulator. It has a small band gap,

meaning less energy is required to excite valence electrons to the conduction band, and a large

atomic number, which increases the probability of a radiation interacting with the crystal. An

energetic photon like a  ray can ionize atoms in the crystal lattice, creating an electron-hole pair.

In the presence of an external electric eld, this causes a pulse of current to ow through the Ge.

The SeGA detectors are coaxial in the sense that the semiconducting Ge material is cylindrical

in shape with a smaller cylindrical cavity inside along the same axis. The central hole bores

through almost the entire length of the crystal, making these close-ended coaxial HPGe detectors.

An electrical contact in the central hole, as well as all along the outer surface of the of the

HPGe cylinder, provides the requisite bias voltage to allow charge carriers to ow through the

semiconducting material. The end of the central contact is also rounded, or bulletized, to eliminate

low-eld regions in the crystal [126]. The amount of current measured in the central contact is

proportional to the amount of energy deposited in the detector by the  ray. Unlike conductors,

whose electrical conductivity increases as the metal is cooled, conductivity in a semiconductor

increases with warmer temperatures. Thermal excitations can cause electrons to cross the band gap

and produce leakage currents. This results in noisy electronic signals and degrades the resolving

power of the detector. For this reason, the HPGe crystals must be kept cool at all times using liquid

N2, which has a temperature ≤ 77 K at atmospheric pressure.

The HPGe crystals are segmented into eight discs, which are each further subdivided into four,

planar quadrants [129]. This segmentation allows for determining the point of initial interaction

between a  ray and the detector as well as increased angular resolution. For GADGET experiments,

we do not need to not collect data from the individual segments of the HPGe crystals, and instead

only measure the current on the central contacts. We have implemented 16 of the SeGA detectors
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Figure 3.7: The betaSeGA, or “barrel,” conguration of the Segmented Germanium Array set up
in the experimental vault. This employs 16 HPGe detectors in two rings around the beam line with
a diameter of 17.3 cm. The large, blue-green containers are cryogenic storage dewars that hold the
liquid N2 for cooling the HPGe crystals located in the center of the array. Photo credit: National
Superconducting Cyclotron Facility / Facility for Rare Isotope Beams, Dirk Weisshaar, Alexandra
Gade.
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Figure 3.8: The fully assembled GADGET system in the S2 vault.

in their “barrel” conguration, as shown in Figure 3.7, inside which the Proton Detector was

designed to t. The angular distribution of  emission is irrelevant for the purposes of our scientic

measurement, and we prefer to maximize geometrical detection eciency for this measurement.

3.2 NSCL Experiment 17024: -Delayed Proton Decay of 31Cl

A radioactive beam experiment (e17024) at NSCL was performed in November 2018 to measure

the -delayed proton decay of 31Cl. The primary goal of this measurement was to determine the

proton branching ratio of the  = 3/2+, 6390-keV excited state in 31S. This is the same resonance

state that had been identied in a previous 31Cl -delayed -ray experiment at NSCL. In preparation

for e17024, the GADGET system was assembled in the S2 experimental vault, as pictured in Figure

3.8. Meanwhile, data collection and monitoring of the system was performed remotely in the

NSCL Data-U. Here, we discuss the supporting infrastructure and operating procedure during the

rst dedicated scientic experiment using GADGET.
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Figure 3.9: Diagram of the Coupled Cyclotron Facility and A1900 fragment separator at NSCL.
Figure credit: Ref. [130].

Beam Delivery

A radioactive ion beam of 31Cl was produced via fragmentation at the Coupled Cylcotron Facility

by accelerating a stable beam of 36Ar up to 150 MeV/u and impinging it on a 1645-mg/cm2 Be

production target. The A1900 fragment separator, depicted in Figure 3.9, removed most of the

undesirable nuclear species from the cocktail beam using magnetic rigidity and a 150-mg/cm2 Al

wedge. Magnetic rigidity causes the higher-energy beam particles to pass through the thicker end

of the wedge, slowing them down closer to the speed of the lower-energy beam particles which

interact with less Al material on the thinner end.

The secondary beam was further puried using the Radio Frequency Fragment Separator

(RFFS),which applied an oscillating electriceld to deect the 31Cl ions through a set of collimating

slits, meanwhile deecting all other nuclear fragments such that they do not pass through the

collimator. Ultimately, we were delivered a 65% pure beam of 31Cl at 6375 pps. In decreasing

order of intensity, the main beam contaminants were 28Si, 30S, and 29P, but fortunately, none of

these nuclide are -delayed particle emitters.
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The Diagnostics Cross

In preparation for radioactive beam experiments, a six-way, ConFlat® cross, supported by an Al

stand, is installed at the end of the beam line in the S2 vault. The cross structure is used for housing

Si detectors as well as a rotatable Al degrader foil and is physically connected to the beam line

using an ultrahigh vacuum seal and a series of hand-tightened clamps. From the reference point

of the beam, the ange on the left side of the cross is connected to an electric turbo pump, which

is backed by an oil roughing pump. Prior to operating diagnostic tools in the cross, the oil pump

removes most of the air in the cross, and only after the pressure in the cavity reaches  1 Torr, the

turbo pump is switched on to reach the highest vacuum possible. Attached to the ange on one of

the faces parallel to the beam axis is a manual valve for venting the cross when bringing the cavity

back up to atmospheric pressure as well as a pressure sensor. Connected to the downstream ange

of the cross is a short beam line extension with a thin beam exit window. This limits the distance

the beam particles travel through the air to ≈ 15 cm after leaving the beam line but before entering

the Proton Detector.

PIN Detector

The top ange of the cross is connected to a pneumatic drive which, when connected to a source

of pressurized air in the vault, can control the position of a 300-m-thick PIN detector, shown

in Figure 3.10. A p-i-n (PIN) detector is a commonly used semiconductor diode, named for its

three distinct doping regions. The i-type region in the middle of the detector refers to a chemically

pure, undoped intrinsic semiconductor material, which in this case is Si. This intrinsic region is

sandwiched between p-type doping and n-type doping regions. The p-type region is doped with

elemental impurities that have a higher electron anity (e.g. P, As, and Sb), and are thus more

likely to accept electrons. Conversely, dopants with a lower electron anity (e.g. B, Al, Ga) are

used in the n-type region, which serve as electron donors.

At the beginning of and periodically throughout the experiment, diagnostic runs were taken for

the purposes of particle identication. During these diagnostic measurements, the beam current
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Figure 3.10: Si PIN detector mounted on PEEK spacers before being inserted into the six-way
cross chamber.

from the accelerator was attenuated and the PIN detector was inserted into the path of the ion beam

in order to measure its energy loss Δ in the detector. To protect the Proton Detector electronics

during PID runs, the bias voltage on theMICROMEGAS anode was turned o, such that beam need

not be cycled on and o, allowing a constant beam intensity be impinged on the PIN detector for

several minutes. As beam particles pass through the PIN detector, their Δ is measured, as shown

in Figure 3.11. This was compared to the expected energy loss of beam particles passing through

300 m of Si using version 1.2 of the atima program in lise++. This allowed us to verify that 31Cl

and 28Si were the two primary nuclear fragments being delivered to GADGET. After a diagnostic

run was completed, the beam is stopped; the pneumatic drive retracts the PIN detector from the

path of the ion beam; beam pulsing resumes, and only then can the MICROMEGAS voltages be

reapplied before beginning a new measurement run.

Beam Energy Degrader

Attached to the bottom ange of the cross is a second pneumatic drive as well as a stepper motor

for controlling the position and angular orientation of the beam energy degrader, respectively.

During a data production run, when beam is being implanted in the gaseous detector chamber and
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Figure 3.11: Energy loss Δ spectrum measured in the PIN detector during particle
identication runs. The ratio between the peak positions is consistent with the ratio between
calculated energy losses in the equivalent thickness of Si.

-delayed proton decays are being measured, a thin, highly pure Al plate is inserted into the beam

path to degrade the energy of incoming ions before they reach the Proton Detector. Detailed beam

calculations were performed with lise++ to determine 0.75 mm as the ideal degrader thickness for

slowing the ≈ 50-MeV/u 31Cl ions leaving the RFFS such that they stop in the middle of the Proton

Detector’s drift region.

By rotating the degrader foil from between 0◦, when the beam is perpendicular to the broad

side of the Al plate, and 90◦, when the beam is parallel with the plane of the thin foil, the eective

thickness of the degrader can be adjusted. At 0◦, beam particles pass through the minimum amount

of Al possible without removing the degrader entirely, but with increasing degrader angle, ions

must traverse more material in the degrader plate, further slowing down the beam particles and

shortening their implantation range in the Proton Detector.

In principle, the stepper motor allows for remote control of the degrader plate’s angular ori-

entation inside the cross. However, in preparation for the 31Cl + decay measurement, utilizing

the stepper motor induced substantial electronic noise in the Proton Detector. While this technical

challenge was later resolved, for the duration of e17024, the Al degrader plate was removed from
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Figure 3.12: Overhead view of the Al degrader foil mounted on a circular protractor between the
entrance window to the Proton Detector (on the left side of the image) and the exit window from
the beam line (on the right side of the image). The degrader angle was set manually and could be
determined to within 1◦ precision.

the vacuum cross and positioned in air, directly in front of the Proton Detector’s beam entrance

window. Thus, in between beam implantation runs, the angle of the degrader plate was adjusted

manually in the experimental vault until an operating angle was determined. Figure 3.12 depicts

how the degrader angle was measured over the course of the experiment.

Online analysis of scalars from the upstream and downstream SeGA rings allowed us to estimate

the relative, longitudinal position of the origin for -delayed  decays occurring in the Proton

Detector. These scalars are proportional to the the number of  ray counts detected in either the

eight upstream or the eight downstream SeGA detectors; we assumed that when the scalar readings

from both SeGA rings were approximately equal, the 31Cl beam distribution should be roughly

centered within GADGET longitudinally. Oine analysis using - coincidences allowed a more

precise determination of the longitudinal beam distribution.

The constant drift velocity for electrons within the eld cage implies the total drift time in

the Proton Detector is proportional to the distance between the MICROMEGAS pad plane and
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Figure 3.13: Drift times recorded for Proton Detector events observed in coincidence with  ray
events detected by SeGA. This plot allows us to visualize the longitudinal beam distribution
within the drift chamber.

the position where + decay occurred along the beam axis. The maximum possible drift time

for primary ionization electrons in a 40-cm drift region is about ≈ 8 s, assuming an 800-Torr

P10 ll gas and a 150-V/cm drift eld. This denes the length of our time window for proton-

 coincidences, since -delayed  events will be detected in SeGA almost immediately, while

charged-particle events resulting from the same decay will take several microseconds to be detected

by the MICROMEGAS. The measured dierence in time between when the  and charged-particle

events are detected yields drift times of the ioniziation electrons, plotted in Figure 3.13.

Electronics

A detailed electronics diagram for e17024 is presented in Figure 3.14. In summary, two modules

were used to provide all biases for the Proton Detector system as well as the PIN detector. Setting

voltages can be done remotely over the lab network via a Linux terminal, and the currents in all

preamplier channels can be monitored through the same terminal. The bias voltages applied to

the HPGe crystals are set and controlled by designated SeGA electronics, which are maintained by
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the Gamma Group at NSCL.
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Drift Field

An N1470B programmable high voltage power supply from CAEN is used to bias the Proton

Detector cathode through a safe high voltage (SHV) cable connection. In order to generate the

150-V/cm electric eld in the drift region, a large, negative voltage (-6 kV) is required. Once the

Proton Detector is lled to its operating pressure with P10 gas, the bias is slowly ramped to the

set-point voltage, where it remains for the duration of the measurement. It is important to avoid

applying high voltages to electrical components when the surrounding gas has not yet reached

operating pressure because this can induce sparking in the detector. The relationship between the

breakdown voltage and gas pressure is described by Paschen’s law [131]. Qualitatively, it implies

that the voltage required to cause electric discharge in near-vacuum or near-atmospheric pressures

is very high, but around pressures of 1− 10 Torr, the breakdown voltage is only on the order of 100

V, depending on the chemistry of the gas.

Detector Gain

The other high voltage power supply is the MHV-4 module from Mesytec. The rst of its four

channels supplies the positive voltage necessary for inducing a strong electric eld in the ampli-

cation region. This 380-V bias is applied through the preamplier, which is directly connected

to the 13 charge-sensitive anode pad plane. The MPR-16-L is a 16-channel, charge-integrating

preamplier, which acts as a charge-to-voltage converter before the electronic detector signals can

be digitized and saved to memory on a lab network computer. The second channel in the MHV-4

unit applies a 40-V bias to the PIN detector via another another preamplier borrowed from the

NSCL electronics pool. Both preamps are powered by an MNV-4. This multi-channel NIM power

distribution and control module, as well as the two preamps, were all manufactured by Mesytec.

The two remaining channels in the MHV-4 module are used to bias the gating grid.
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Gating Grid

The electronic gating grid was designed to protect the preamplier during beam implantation.

When beam is implanted in the gaseous Proton Detector, large quantities of ionization electrons

are liberated, which can induce strong currents on the MICROMEGAS anode plane. This rapid

charge deposition can saturate the preamp and damage individual channels, preventing signals

induced on the corresponding detector pad from being recorded in data. To avoid charge saturation,

beam experiments using GADGET run in two-step cycles of beam implantation followed by decay

measurement, with which the gating grid is synchronized. When beam is implanting in the Proton

Detector, a positive voltage is applied to the gating grid, causing it to appear “opaque” to free

electrons. Systematic tests of the gating grid were performed before e17024, and a 150-V bias was

found to be most eective.

After beam implantation stops, the voltage on the gating grid switches to a negative bias at

equipotential with the last copper ring in the eld cage, which was calculated to be -225 V. This

causes the gating grid to appear “transparent” to primary electrons, allowing ionization created

from -delayed, charged-particle decays to enter the amplication region and produce detectable

signals. In order to utilize beam time as eciently as possible, the length of these implant-decay

cycles is chosen with respect to the half-life of the nuclear species being studied. Considering the

190-ms half-life of 31Cl, the length of the implantation time per cycle was set to be ≈300 ms, while

the optimal measurement time per cycle was about 200 ms.

It is important that the electronics connected to the MICROMEGAS are protected by the gating

grid over the entire beam implantation period. For this reason, the gating grid is switched to opaque

mode slightly before the beam restarts implantation, and it only switches back to transparent mode

once the beam implantation period has ended, as depicted in Figure 3.15. These two timing signals

need to be sent to the beam operators and the gating grid to ensure synchronization. The logic

signals used to communicate this information were constructed using the two LeCroy Model 222

Dual Gate and Delay Generators in Figure 3.16.

The gating grid logic signal must be sent to a CGC Instruments NIM-AMX500-3 switch, shown
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Figure 3.15: Logic signals represented as voltage over time for the gating grid (blue) and the ion
beam (red). The amplitude of the voltages are related to dierences in logic signal families. The
dual gate/delay generator sends a transistor-transistor logic (TTL) signal to the switch,
communicating which bias voltage should be applied to the gating grid. When a TTL signal has a
voltage amplitude of 1.5 − 5 V, this corresponds to a digital signal of “1,” while a signal voltage of
0 − 0.7 V logically implies “0.” Similar timing information is communicated via a Nuclear
Instrumentation Module (NIM) signal, which is sent to the beam operators and the digital data
acquisition system. When a NIM signal voltage is exactly 0 V, this implies a digital “0,” but a
NIM signal voltage between -0.8 and -1 V corresponds to a binary value of “1.”

in Figure 3.17, which is responsible for alternating the source bias between the negative and positive

voltages. SHV cables connect the third and fourth channels in the MHV-4 module to the switch’s

“Neg1” and “Pos1” feedthroughs, respectively. A T-shaped, SHV connector is attached to the

switch’s “Com1” feedthrough, to which two SHV cables directly connect the switch and the gating

grid via the electrical feedthroughs in one of the Proton Detector’s downstream anges. The same

timing signal is also sent directly to the digital data acquisition system to record the gating grid

status over the course of the entire experiment.
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Figure 3.16: Dual gate/delay generators in the Data-U electronics rack. These modules produced
the TTL and NIM timing signals sent to the gating grid and beam operators, respectively.

Figure 3.17: All electronics modules utilized on the rack in the S2 vault during NSCL
experiment e17024.
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Digital Data Acquisition System

All experimental data measured with GADGET was obtained using NSCL’s digital data acquisition

system (DDAS). Traditionally, data acquisition systems for experimental nuclear physics involved

passing detector signals through a series of analog NIM modules, which are designed to shape

electronic pulses, as well as correct for any timing discrepancies between signals that should arrive

in coincidence but are misaligned in time due to small dierences in delay between channels. Once

signals are well-shaped and synchronized, they can then be digitized and read into a computer or

written directly to magnetic tape. In contrast, DDAS eliminates the need for many of the analog

signal-processing modules in its pulse-shape analysis of digitized signals.

Primarily, DDAS was developed to work in conjunction with SeGA for the purposes of in-beam

studies that combine -ray detectionwith identication of reaction residues [132]. This streamlined,

digitized systemwas implemented in SeGA for determining the rst interaction position of a  ray in

one of the segmented crystals and subsequent -ray tracking in the detector. This has signicantly

improved the ability to measure the angular distribution of  emission and has allowed for more

precise Doppler corrections in fast beam experiments. For stopped-beam measurements involving

beam implantation followed by charged-particle decay, like NSCL experiment 17024, DDAS allows

for zero dead time measurements of rare decays [133].

For NSCL experiment 17024, we utilized two 250-MHz, 16-channel PXI Digital Pulse Pro-

cessors in a PXIE-CRATE-P16X14 from XIA, which was connected to one of the lab network’s

data acquisition computers. DDAS employs a pair of trapezoidal lters for leading-edge triggering

and pulse-amplitude measurements as well as a constant-fraction discriminator (CFD) algorithm to

determine the timestamp and energy of detector signals [134]. As depicted in Figure 3.14, the rst

13 DDAS channels were connected to all the MICROMEGAS detector pads through the MPR-16-L

preamp. Another channel was dedicated to measuring the NIM signal from the dual gate/delay

generator modules for recording the status of the gating grid mode throughout the experiment. Each

of the 16 individual SeGA detectors were connected to their own DDAS channel in the XIA crate,

and a single channel was used to record events from the PIN detector in the cross. A more complete
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Figure 3.18: Example of the visualization windows used during online analysis using SpecTcl.

description of hardware implementation for DDAS in experimental applications at NSCL is given

by Ref. [134].

Operating Procedure and Online Analysis

Detailed documentation on the architecture of the NSCL data acquisition software is provided in

the user guide [135], but in short, each detector signal triggered in DDAS is assigned a timestamp

and written to the ring buer by the Readout program. The ring buer is divided into events with a

characteristic time window, which we set to 4 s for this experiment. Data in the ring buer can be

saved by writing to a binary event le (“.evt”), accessed for online analysis, or both simultaneously.

The ReadoutShell programwas used for collecting and saving GADGET events. Experimental data

were generally procured in hour-long measurement runs. The purpose of relatively short runs was

to reduce the probability of the Readout program from crashing in the middle of a measurement,

which would result in the loss of all data from a single run.

Before beginning of a standard measurement run, the gas ow and pressure inside the Proton

Detector was ensured to be stable. We veried that the beam was o, that the timing between the

gating grid and the beam cycling was appropriately synchronized, and that the PIN detector was in

the retracted position. Then, detector biases were slowly ramped until they reached the set-point

voltage. Once beam was allowed to start entering the Proton Detector again, data collection could
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resume, and all the diagnostic information about the present status of the experimental setup would

be recorded. At the end of the hour, the ReadoutShell program was halted to prevent further data

collection. During a diagnostic run for particle identication, which were performed aperiodically

multiple times per day, we would typically attenuate the beam, remove the amplication bias on the

anode, and turn o the beam pulse cycling. The Si detector would then be inserted into the path of

the beam via the pneumatic drive, which is controlled remotely, and a new Readout session would

be used for the PIN detector. All GADGET data was visualized during the experiment using the

SpecTcl program, as depicted in Figure 3.18.

After a measurement run was terminated and all events were written to le, the “ddasdumper”

program was used to convert “.evt” les to “.root” les. A sorting code was used to extract the

relevant information from each DDAS channel and ll histograms corresponding to each detector

channel in the GADGET system. A second sorting code was used to apply the veto conditions

on the individual Proton Detector pads and build all the histograms storing particle- coincidence

information. The time window for building coincidence histograms was extended to 8 s because

this is the maximum possible drift for ioniziation electrons created by decays near the cathode.

These processed “.root” les could then be analyzed using the ROOT analysis framework to provide

a more detailed understanding of dataset during the experiment.
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CHAPTER 4

DATA ANALYSIS AND SCIENTIFIC RESULTS

4.1 The Proton Branching Ratio

The primary scientic goal for the analysis of the 31Cl -delayed proton decay data obtained during

NSCL experiment 17024 was to determine the proton branching ratio Γ/Γ of the 6390-keV level

in 31S. This information is needed to evaluate the equation for the resonance strength:

 =
(2 + 1)

(2 + 1) (2 + 1)
ΓΓ

Γ
. (4.1)

From a previous 31Cl + decay measurement, Bennett et al. determined the -delayed  decay

intensity through this state to be  (abs.) = 3.38(16)% [121]. In the case of this resonance state,

 and proton emission are the only two open decay channels. Therefore, the sum of the branching

ratios is simply (Γ + Γ)/Γ = 1. This allows us to express the proton branching ratio in terms of

the -delayed radiation intensities through the 6390-keV level as

Γ

Γ
=



 + 
. (4.2)

Gain Matching and Sorting

The spectra referenced in this dissertation contain data from over 86 hours of on-target beam time.

Each hour-long run was automatically divided into a number of sub-runs, determined by how much

data was acquired in a particular acquisition session. After completing a measurement run, the

raw event les of the recently acquired data were converted to a le format that allowed for more

detailed oine analysis using the root framework [136]. An automated analysis script was used to

provide a preliminary gain-matching of the ve inner MICROMEGAS pads. This involved tting

the largest proton peak in the spectrum to extract the mean analog-to-digital converter (ADC)

channel of the intense 1-MeV -delayed proton transition, modeling the proton distribution as a
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Gaussian function. Because the statistics for any one particular acquisition run were quite low,

especially at the beginning of the experiment, only the 1-MeV proton peak could be consistently t

automatically. For the sake of expediting our analysis while still collecting data, our zeroth-order

calibration procedure assumed a linear mapping between ADC channel and center-of-mass decay

energy with no oset, estimating the gain of a single detector pad as the ratio between the 1-MeV

decay energy and the mean ADC channel. After applying this rough gain-matching procedure for

each of the active detector pads, we were able to combine statistics from all inner pads to observe

the presence of the weak, low-energy -delayed proton decay near 260 keV before the end of NSCL

experiment 17024.

The sorting routine used to accomplish this task applied veto conditions to remove Proton

Detector events with long tracks which deposited energy across multiple detector pads. By applying

these anti-coincidence cuts, histograms were generated for each of the ve, inner detector pads

labeled A-E in Figure 3.3. The procedure is as follows: If all ionization electrons generated from

a single proton event are detected in only one MICROMEGAS channel, the energy of this event

is added to the one-dimensional histogram spectrum for that detector pad. The -delayed proton

spectra for all individual pads A-E are plotted in Figure 4.1. However, if a proton decay deposits

all of its energy within the active region of the detector, but this charge is shared among multiple

inner pads, this event will not be recorded in any single detector channel’s histogram. Instead, this

decay energy is added to the event-level combined spectrum as shown in Figure 4.2. Events that

deposit all their energy in only one of the ve inner pads are also included in this cumulative proton

spectrum as well. A more detailed gain-matching procedure was performed for each individual pad

on a run-by-run basis after the experiment during oine analysis. This utilized the two strongest

proton peaks in the spectrum to determine a linear mapping, instead of just using the single 1-MeV

peak and assuming zero oset.
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Figure 4.1: 31Cl -delayed proton spectra as measured by each of the ve inner pads individually.
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Figure 4.2: Combined energy spectrum for 31Cl -delayed proton decays with event-level
summing over all pads.
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Preliminary Energy Calibration with Central Pad

All previous reports of 31Cl -delayed proton decays assumed that particles emitted from proton-

unbound states in 31S populated the ground state of 30P. If this is also the case for the only visible

proton peak below 300 keV in Figs. 4.1 and 4.2, it should be obvious that these protons were

emitted from the astrophysically important 6390-keV level; no other states within 100 keV have

been observed to be populated by 31Cl + decay. However, in order to say for sure that we have

observed proton decays from the 260-keV resonance of interest, we must demonstrate that decay

energy we measure is consistent with Ref. [121].

It did not take long in the process of analyzing the 31Cl -delayed proton data to realize that the

spectrum above 700 keV is much more complicated than had previously been assumed. For this

reason, we did not feel comfortable using all high-energy proton peaks and their reported literature

energies in our initial energy calibration procedure. Instead, we only used the decay energies

of the three strongest -delayed proton decays as our calibration standards. We conrmed that

these are ground-state transitions since they are not observed in coincidence with any 30P  rays.

Their decay energies as measured in previous 31Cl -delayed proton experiments [117; 118] are

in agreement with the well-known 31S excitation energies measured in many reaction experiments

[137; 138; 101; 105; 102; 103; 99]. They also have the added benet of being the decay energies

closest to our 260-keV resonance of interest. For our rst attempt at an energy calibration, we

adopted the evaluated center-of-mass energies (c.m.) = 806, 906, and 1026 keV, each with an

associated 2-keV uncertainty [119].

We chose to use the pad A proton spectrum, comprised of events only measured by the central

MICROMEGAS pad, for our rst calibration attempt when reporting the energy of the low-energy

peak. Its location in the detector means that pad A has relatively high statistics compared to the

other four inner pads, but it is also has a smaller area than all other active pads. This limits

the amount of energy + particles can deposit in this pad before being vetoed, pushing the +

background to lower energies and reducing the eect of summing with energy from proton decays.

Thus, the resulting proton peaks are the sharpest in the central pad spectrum and allow for a more
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Figure 4.3: A 2-minimized t of the calibration peaks as measured by the central pad of the
Proton Detector. The three proton peak distributions were modeled as Gaussian and the
background as linear.

precise energy calibration. The calibration peaks and the low-energy resonance peak of interest

were all t with Gaussian distributions and a rst-order polynomial function to describe the mostly

at background in the energy range 300 - 700 keV, as shown in Figs. 4.3 and 4.4, respectively.

The fraction of the proton’s kinetic energy that goes into ionizing the ll gas varies as a function

of decay energy. The discrepancy between the measured amount of ionization in the detector and

the total energy of the resonance center-of-mass decay energy is known as the pulse height defect.

This was calculated for the protons and recoils associated with each of the calibration peaks as well

as for resonances up to 2 MeV using trim [139]. Since the 806- and 1026-keV proton peaks were

used to gain match all proton spectra, calibrating relative to the three peaks in this energy region

should already account for the eect of any small pulse height defect; the dierence between their

center-of-mass decay energies and the amount of ionization they created in an 800-Torr P10 gas

is 6-8 keV. However, extrapolating this defect down to lower energies may cause the low-energy

proton peak to appear shifted in the spectrum.

To account for this, we plotted the means of three calibration peak’s tted Gaussian distributions
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Figure 4.4: Fit of the weak, low-energy proton peak and background region in the pad A
spectrum.

as the independent variable and the calculated total ionization in the gas as the dependent variable.

Figure 4.5 shows this data t with a line and the associated uncertainty band. We then used this

calibration function to evaluate the amount of ionization the low-energy proton decay should have

produced [268.2(8.5) keV] and then calculated its resonance energy to be (c.m.) = 273(10)

keV based on what the decay’s pulse height defect should be in order to produce the observed

amount of ionization in the detector. The total uncertainty in the resonance energy comes from

summing in quadrature the 8.5-keV uncertainty associated with extrapolating the energy calibration

down to low energies, the uncertainty associated with the 5-keV pulse height defect, and the 1-keV

statistical error from tting the small peak. While not expected to be as accurate or precise as other

methods for determining the resonance energy, we are consistent with Ref. [121] to within 1.4

standard deviations. For this reason, we refer to this resonance as the 260-keV decay throughout this

document. A more robust energy calibration of the proton spectrum over all energies is provided

in Chapter 5 of this dissertation.
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Figure 4.5: Central detector pad energy calibration. Top panel: Linear t mapping positions of
three calibration peaks in Pad A spectrum to known decay energies. Bottom panel: Plotting
residuals between data and linear t model.

Proton- Coincidences

In addition to the 31Cl -delayed proton decay data, we simultaneously collected substantial -

delayed  ray statistics with SeGA over the course of e17024. This information was extremely

useful for diagnostic purposes and ultimately for constructing the most detailed 31Cl()30P decay

scheme to date, as will be discussed in Chapter 5. However, the primary astrophysical importance

of the  rays from this experiment was the use of coincidence analysis to conclusively determine

the initial and nal states of the 260-keV proton transition. In order to visualize this  data, we

produced a variety of dierent histograms.

Ungated  ray events were detected by all 16 of SeGA’s HPGe crystals. We produced a gain-

matched energy spectrum histogram for each detector channel using the energies of well-known

sources of background radiation as calibration points. This included  rays emitted in the decays

of naturally occuring 214Bi, 228Ac, 40K, and 208Tl in the environment [140]. We also utilized the
31Cl -delayed  at 6279 keV in order to extrapolate our linear gain-matching function to higher
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Figure 4.6: 31Cl -delayed  ray singles spectrum including all events from 15 of the 16 SeGA
detectors observed to be in coincidence with non-vetoed, charged-particle radiation in the Proton
Detector.

energies. Not unlike the proton spectra, each SeGA detector’s energy spectrum was gain-matched

on a run-by-run basis by tting these calibration peaks with Gaussian functions, recording the mean

ADC channel of the 2-minimized distributions, plotting known the  ray energies as a function

of these means, and tting the data with a linear calibration function. Combining histograms from

15 of the 16 HPGe detectors produced a “singles” spectrum with maximum  ray statistics; one of

the SeGA detectors exhibited poor energy resolution and was excluded from subsequent analysis.

However, without enforcing any gating conditions, we cannot be sure that the decays measured

by SeGA occurred within the active region of the detector. This makes it challenging to compare

the intensities of -delayed proton and  emissions. For this reason, we set an 8-s time window to

record proton- coincidences since this is the maximum possible drift time for primary ionization

electrons originating from decays near the cathode. Thus, every  ray detected in SeGA that occurs

within the 8 s prior to a recorded Proton Detector event is added to the one-dimensional proton-

gated  ray spectrum shown in Figure 4.6. In addition to this proton-gated  singles spectrum, we
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Figure 4.7: Two-dimensional coincidence matrix between  rays detected in SeGA and
charged-particle events in the Proton Detector.

also generated two-dimensional histograms that plot  energy versus proton energy for all proton-

coincidences, as depicted in Figure 4.7. Similarly for multiple  rays detected in coincidence with

each other, assuming their detection in SeGA precedes a non-vetoed Proton Detector event, these

events are added to another coincidence matrix, shown in Figure 4.8, where both axes correspond

to  energy.

By applying a coincidence cut on 260-keV proton events and plotting all the detected  rays in

that are observed within that same 8-s time window, we can check to see if this low-energy, -

delayed proton decay is truly populating the ground state of 30P. This is relevant because only proton

captures on the ground state of 30P are relevant for 30P(, )31S in ONe nova nucleosynthesis. For

comparison, we can place another coincidence gate on a featureless background region of the Proton

Detector data over the energy range 350 − 700 keV. This roughly linear background contribution

decreases gradually across the entire spectrum and likely originates from higher-energy proton

events that do not deposit their full energy in the active region. This continuum should be a

reasonable representation of the background under the 260-keV peak.

To ensure a proportional comparison between the two regions, the background-gated  ray
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Figure 4.8: Two-dimensional - coincidence matrix for events occurring within the same 8-s
window preceding charged-particle radiation observed in the Proton Detector.

spectrum should be scaled down by the ratio of counts in each region of the proton singles

spectrum. We can see in Figure 4.9 that there is no evidence of  emissions in coincidence with the

260-keV protons above background level. The fact that there are slight excesses across most bins

in the 260-keV-proton-gated spectrum likely reects the fact that some of the background under the

peak is the result of + particles, which we know are likely to populate -emitting states in 31S.

Meanwhile, sampling from the background region 350−700 keV almost exclusively includes proton

events, so any coincidence  rays must be either accidental or true coincidences from higher-energy

protons populating 30P excited states. Still, there is no statistically signicant dierence in the

number of the photopeak between the two particle-gated histograms, suggesting that we are, in fact,

observing -delayed proton decay through the 260-keV resonance of interest.

Combined Pads Detector Response

The random, statistical variation associated with measuring some quantity with a particular central

value can usually be described by a Gaussian distribution, assuming the number of observed

events is large. Since the Proton Detector and SeGA are designed to measure the charge or
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Figure 4.9: Comparison between 260-keV proton-gated  rays and background-gated  ray
spectrum. The  rays in coincidence with background are sampled from the energy range
350 − 700 keV in the Proton Detector spectrum and have been scaled down by the ratio of counts
in the two gating regions in the proton singles spectrum. The arrows point to the energies where 
events would be observed if the 260-keV -delayed proton decays populate excited states in 30P;
their colors correspond to the energy levels from which the  rays are emitted.

current induced by stochastic processes, which are proportional to the energies of discrete nuclear

transitions, the corresponding spectral peaks exhibit shapes that can be represented by Gaussian

functions. However, the complicated physical interactions between radiation and the detection

medium degrade the symmetry of a normal statistical distribution.

In the case of the Proton Detector, -delayed proton decays result in the emission of three

ionizing, charged particles: the + particle, the proton, and the recoil nucleus. Because the proton

and recoil nucleus decay back-to-back over a relatively short range, moving in opposite directions

due to conservation of linear momentum, depositing comparable fractions of their energy into

ionizing the detector’s ll gas, the peak shape associated with the center-of-mass energy of the

proton decay alone is basically symmetric. However, the + particles inevitably deposit some of

their energy in the gas as well, resulting in an observed decay energy which is slightly higher than

the proton-emitting resonance energy. This + summing eect causes the -delayed proton decay
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peaks to be slightly skewed to the right. The shape of the large + background that exists at low

energies (<200 keV) is well t with a decaying exponential function, and peaks corresponding to

-delayed proton decays can be understood as a sum of these energies. For this reason, we model

the detector response of each Proton Detector pad as an exponentially modied Gaussian (EMG)

function with a high-energy tail. In terms of the independent variable , which is proportional to

energy in our spectra, the shape can be expressed using the equation

 (; ,, ) = 


2



2 (2+2−2)erfc


 + 2 − √

2


, (4.3)

where  represents the centroid of the function’s symmetric Gaussian component,  is proportional

to the width of the peak,  determines how asymmetrically skewed the distribution is, and the

normalization constant  represents the area under the curve [141]. The complementary error

function (erfc) is dened in terms of the error function (erf) as

erfc() = 1 − erf()

=
2√


∫ ∞


−

2
.

(4.4)

The proton peaks in the individual pad’s histograms have a unique shape and resolution. The

extent to which proton peaks are skewed in each pad is primarily due to the relationship between

detector pad surface area and the transverse distribution of the radioactive beam. Detector pads with

a larger surface area can collect more charge from + particles, resulting in a more right-skewed

distribution function. Similarly, the beam distribution in the detector aects how likely the +

particles are to deposit their maximal energy into ionizing the ll gas. Furthermore, event-level

summing over all ve inner pads also results in a unique detector response, which although having

worse energy resolution, has the benet of much higher statistics and a better, more precise detection

eciency.

Many of the peaks in the 31Cl -delayed proton spectra are quite close together at higher proton

energies since the level density of proton-emitting states increases with excitation energy. To

accurately quantify the number of counts in any single peak using an analytical t function, it is
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often necessary to t multiple peaks in the spectrum over a range of several hundred keV using

a sum of several EMG distributions. We refer to the ratio between a spectral peak’s full width at

half maximum (FWHM = 2
√
2 ln 2 ≈ 2.355) and its corresponding decay energy as the relative

resolution, which should, in principle, decrease as a function of energy. However, the absolute

value of the FWHM is likely to increase both due to detector physics and because the total decay

width of quantum states tends to increase as a function of energy, and some of these levels are likely

to be intrinsically broad. The observed peak widths over a relatively small energy range (≈ 300

keV) are basically constant, but they tend to increase slightly from 700 keV up to 2.5 MeV. For this

reason, when tting multiple proton peaks, we assume the width varies smoothly as a function of

energy and thus parameterize the shape of our EMG distributions by the relation () =  + .

This constrains the peak width to be a linear function of decay energy, the slope and intercept of

which we determine via 2-minimization. Similarly, we assume the skew parameter  to vary

smoothly as a function of energy and let this parameter be constant for each EMG distribution over

a given t range.

The mostly featureless region over ≈ 300 − 700 keV in the event-level combined spectrum is

extremely at. We suspect this background results from higher-energy decays near the upstream

end of the detector chamber, whose decay protons are emitted in the direction of the cathode. This

“wall eect” likely causes protons to deposit some fraction of their energy in the active detection

region before being absorbed by the cathode and are thus not rejected by the veto pads. This

hypothesis agrees with the observation that the individual pad spectra have slightly steeper slopes

in this background region since increasing proton energy heightens the probability of triggering

the veto condition more sensitively when the eective pad detection area is smaller. While much

of the spectra are populated with many features at decay energies above 700 keV, in the regions

between obvious peaks, the background level clearly decreases with energy, which also agrees

with the presented explanation for this eect. Thus, we believe it is reasonable to assume a linear

model to describe our background, while tting the -delayed proton peaks with EMG functions.

We estimated the systematic uncertainty in our detector response model by xing and varying all
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Figure 4.10: Fit of the 260-keV resonance peak summing proton events over all active detector
pads.

parameters given in Equation 4.3 and applying these ts over various energy ranges across the

entire proton spectrum.

Normalization Procedure

Having parameterized our detector response function at higher proton energies background, we

determined the observed number of protons emitted from the 6390-keV level in 31S to be  =

2731(203). As shown in Figure 4.10, this was accomplished by tting the small, low-energy

protons in the event-level combined spectrum with the sum of an EMG distribution for the peak;

a linear function was used to describe the at background region above the resonance energy and

an exponential function for the + background below the resonance energy. The total uncertainty

in the number of counts was determined by adding the statistical error of the t Δstat. = ±200
in quadrature with the systematic uncertainty Δsys. = ±36 associated with varying the t range

and constraints on the response function parameters. However, in order to determine the proton

branching ratio of interest, we must normalize this -delayed proton decay intensity to some known
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Figure 4.11: Fit of the three calibration peaks in the all-pads-combined spectrum. We do not
extend the t above 1.1 MeV in this case because we determined that there are previously
unobserved -delayed proton decays in this region. These transitions had not been considered
when evaluating the intensity of the 1-MeV proton peak, and thus for the purposes of normalizing
the literature values, we exclude them as well.

value.

We considered a variety of dierent normalization strategies, including normalizing to known

-delayed  decay intensities, counting individual 31Cl ions by measuring their energy deposition

in the detector without the amplication eld, as well as using proton- coincidences that indicate

population of 30P excited states. However, each of these methods had their own unique challenges

that prevented us from achieving an unambiguous normalization standard. Ultimately, we chose to

adopt the evaluated literature intensity [ (abs) = 1.31(2)%] of a strong, -delayed proton emission

with the center-of-mass decay energy  (c.m.) = 1026 keV [119]. We determined the number of

1-MeV proton counts to be 1026
 = 3.16(2) × 106 by tting the spectrum from 350 to 1100 keV

with three EMG distributions to model proton peaks at 806, 906, and 1026 keV on top of a linear

background as shown in Figure 4.11.

By taking the ratio between the number of counts in the small, 260-keV resonance peak of
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interest and the total counts in the large, 1-MeV normalization peak, we can determine the -

delayed proton intensity needed to evaluate Equation 4.23. However, we must also take into

account the eect of proton detection eciency  at the relevant energies. This relationship can

be expressed as

260 =
260

 /260

1026
 /1026

1026 . (4.5)

Proton Detector Eciency Simulations

In the process of designing the Proton Detector, Monte Carlo simulations were used to model

detector response and evaluate the detection eciency as a function of proton energy. These initial

simulations were performed using the GEometry ANd Tracking (geant4) framework, which is a

detailed, object-oriented platform designed at CERN to simulate the passage of particles through

matter and their interactions with variety of detection media [142; 143; 144]. The exact geometry

of the Proton Detector was specied in code as well as the chemistry of the gas and the specic

energies of known proton decays. The only experimental input to the geant4 simulations was the

three-dimensional distribution of the 31Cl gas inside the detector chamber. Assuming the beam spot

on the detector pad plane is well-described by a two-dimensional Gaussian function, the transverse

distribution of the radioactive source was deduced from the observed hit pattern over the course of

the measurement.

Using the multiplicity of proton events above 700 keV detected by each of the ve inner pads, a

2-minimization procedure was implemented to approximate the x- and y-coordinates of the beam

spot’s origin as well as the radial width for the transverse component of the beam distribution. In

the initial geant4 calculations, we also enforced the condition that the beam spot be truncated at a

radial distance of 25.4 cm from the center of the pad plane, since this corresponds to the size of the

window through which the beam enters the Proton Detector; Figure 4.12 shows the transverse beam

distribution after allowing for one half-life of radial beam diusion. The longitudinal distribution
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Figure 4.12: Beam spot used to represent the transverse distribution of 31Cl -delayed proton
decays in the Monte Carlo eciency simulations.

in the eciency simulation was specied in terms of the observed drifted times, plotted in Figure

3.13, for Proton Detector events observed in the 8-s window following the detection of a  ray in

SeGA. However, this model did not take into account the eect of electron diusion in the P10 ll

gas.

The GADGET system has recently been upgraded to operate as a time projection chamber

(TPC), resulting in a need for improved spacial granularity. The number of detection channels

has been increased from 13 to 1024, contained within basically the same pad plane area. This

means that each detector pad is now much smaller, and the eect of ionization electrons spreading

out radially in time as they drift toward the anode is readily apparent. Upon further investigation,

this eect was actually found to be much larger than originally anticipated, which motivated us

to incorporate this electron diusion into our eciency calculations. In the interest of time, we

developed a simple, geometrical model of the eciency rst to estimate the size of this eect.

When neglecting electron diusion, this Monte Carlo method with simplied physics was able

to reproduce the proton detection eciency from the geant4’s much more detailed simulation

of physical interactions to within 3% for proton energies up to 1.4 MeV, as shown in Figure ??.
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Ultimately, we decided to use this simplied geometric model to calculate our nal proton detection

eciencies after adding in the diusion of ionization electrons.

The simplied, geometric Monte Carlo model assumes the same transverse and longitudinal

beam distributions as described for the geant4 simulations. The x- and y-position coordinates at

which a 31Cl beam particle undergoes -delayed proton decay are randomly sampled from the beam

spot histogram. The z-coordinate of the decay is generated by converting a randomly selected drift

time to its analogous spatial location, since the average z-component of the ionization electrons’

drift velocity is constant under a uniform electric eld. A total of 104 proton decay events were

simulated for every proton energy corresponding to a decay peak in our spectrum, resulting in a

1% statistical uncertainty. The proton stopping power / was calculated for a range of energies
using srim for a 808-Torr gaseous medium of 90% Ar and 10% CH4.

In the simulation, components of the emitted proton’s direction are generated isotropically in

all three spatial dimensions. The deposition of proton energy in the ll gas is iteratively calculated

as

Δ =



Δ (4.6)

for step sizes of Δ = 0.01 mm over the entire length of the track. Because the recoiling 30P nuclei

have such short ranges in the gas, we only consider the energy carried away by the proton in the

laboratory frame, just like in the geant4 simulations. At each 0.01-mm step along the proton track,

we generate a cloud of ionization by randomly sampling the x- and y-positions of electrons from a

two-dimensional Gaussian distribution, whose width is proportional to the drift time of the decay

event

() =

2, (4.7)

where  = 2 dimensions, since only diusion in the transverse plane aects detection eciency

[127]. The electron diusion coecient  = 9116(273) cm2/s was calculated using magboltz

[145], and the primary component of the uncertainty in  comes from the gas pressure, while the
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uncertainty from the drift eld is negligible. The number of electrons simulated on each iterative

step is proportional to the energy loss of the proton in the gaseous volume

 ≈ Δ/ , (4.8)

where  = 26 eV/ion pair is the energy required to form a single electron-ion pair in P10 gas

[126; 146]. If the number of electrons sampled from outside the active region of the detector, that

is for which

2 + 2 > 4 cm, exceeds some trigger threshold, the corresponding proton decay

event is vetoed. The veto threshold is set in software to be the same for all pads in units of ADC

channels. However, the ve active pads all have slightly dierent gains, corresponding to an energy

threshold range of 5 − 20 keV. The number of electrons was calculated using Equation 4.8 for 5-,

10-, and 20-keV thresholds, and simulations were performed at each trigger sensitivity level in

order to quantify the systematic uncertainty associated with the veto condition. The electron veto

trigger threshold accounts for a 3−4% uncertainty on both the upper and lower limits of the relative

detection eciency 1026/260.
The other sources of systematic uncertainty associated with modeling the ratio of detection

eciencies are related to the initial spatial distribution of the beam particles when they decay as

well as the ranges of the protons in the gas. The latter is a small eect, for which srim documentation

quotes a 4% uncertainty in the stopping powers for protons in gas [139]; this translates to a 1%

uncertainty in the lower limit of 1026/260 and a 2% eect on the upper limit. The former

uncertainty related to the distribution of 31Cl in the gaseous volume is a bit more complicated.

Using the 2-minimization procedure to determine the x- and y-components of the beam spot’s

centroid as well as the width of the distribution, we estimate that these parameters can be realized to

within ±6mm. Varying each of these parameters by 6 mm in simulation produces a 2% uncertainty

on the lower limit and a 5% uncertainty on the upper limit of the relative detection eciency.

Because the beam enters the Proton Detector through a thin window with a 25.4-mm radius,

the initial eciency model assumed a hard cuto at this boundary, meaning no 31Cl decays were

simulated further than 25.4 mm away from the origin of the pad plane. However, it is possible for
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beam particles to diuse under Brownian motion before undergoing -delayed proton decay. The

amount of outward radial diusion from the entrance aperture was calculated using Equation 4.7

for zero, one, and two 31Cl half-lives to evaluate the upper limit, central value, and lower limit of

1026/260, respectively. The diusion constant for 31Cl in Ar gas was calculated using the equation

 =
3/2

12Ω


1
1

+ 1
2

, (4.9)

where 1 and 2 are the molar masses (g/mol) of the 31Cl and Ar,  is the pressure (atm) inside

the chamber,  is room temperature (K), and  is just an empirical coecient [147]. Values

for the dimensionless, temperature-dependent collision integral Ω are tabulated in Ref. [148] but

are usually on the order of unity, which we adopt. The average collision diameter (Å) is simply

12 = (1 + 2)/2, where 1 and 2 are twice the Van der Waals atomic radii for Cl and Ar,

adopted from Ref. [149]. The calculated value of  for 31Cl in Ar gas agrees well with the

empirical self-diusion coecient for Ar as reported in Ref. [148]. Ultimately, like the uncertainty

associated with parameterizing the transverse beam distribution, the systematic error from beam

particle diusion from the aperture is 2% for the lower limit of 1026/260 and 5% for the upper

limit. After performing numerous Monte Carlo simulations over a variety of input parameters and

having tested all the systematic eects in our eciency model, we determined that the ratio of

proton detection in eciencies in our experiment was 1026/260 = 0.73+0.09−0.05.

Since originally reporting this number in literature [150], we have updated the eciency

simulation to include the wall eect and improved the sampling procedure. The latest version

yields consistent, albeit slightly dierent numerical results. The preliminary numbers reported in

Chapter 5 for all 31Cl -delayed proton intensities reect these changes. The Monte Carlo results

of the simplied, geometric model and the geant4 simulations are compared in Figure 4.13.

Final Result

Substituting the results from relative detection eciency simulations into Equation 4.5 along with

the adopted literature intensity of the 1-MeV normalization peak and the observed counts in both
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Figure 4.13: Eciency to detect protons with GADGET as calculated by geant4 simulations
assuming no electron diusion (blue), the simplied, geometric model without electron diusion
(green), and the simplied, geometric model including the electron diusion eect (red).

spectral peaks, we determined that the -delayed proton decay intensity through the low-energy

resonance of interest was 260 = 8.3+1.2−0.9×10−6. After perusing the most recent literature evaluation

of -delayed charged-particle decays [119], we determined that our result represents the weakest

-delayed proton decay ever measured for resonances below 400 keV. Using Equation 4.23, we

have calculated the desired proton branching ratio to be Γ/Γ = 2.5+0.4−0.3 × 10−4.

4.2 Calculating the Total Thermonuclear Rate

Having determined the crucial proton branching ratio, the only remaining piece of information

needed to evaluate Equation 4.21 for the 260-keV,  = 3/2+ resonance is the  partial width Γ.

Since  ≪  for the 31S excited state at 6390 keV, we can make the approximation Γ/Γ ≈ 1 =⇒
Γ ≈ Γ. Because the total width of the nuclear level is inversely proportional to its lifetime Γ = ℏ/,
there have been several attempts to measure the lifetime  of this short-lived state, but so far, a nite

value has eluded experimental determination. Thus, we must rely on theory to calculate this value

in collaboration with Prof. Alex Brown at Michigan State University. Discussion of the nuclear
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shell model in this section also borrows heavily from his lecture notes [1].

In addition, the 6390-keV level discussed extensively in this dissertation is not the only resonance

state that contributes to the 30P(, )31S reaction, although it is expected to dominate the total

thermonuclear rate. Here, we will also evaluate past work on other resonances in literature,

calculate a new recommended rate, and compare the resonant reaction formalism to Hauser-

Feshbach statstical model calculations.

The Nuclear Shell Model

The nuclear shell model was rst developed by Eugene Paul Wigner, Maria Goeppert Mayer,

and Johannes Hans Daniel Jensen, for which they earned the 1963 Nobel Prize. As fermions,

protons and neutrons follow the Pauli principle and ll their respective orbitals independently. The

shell model assumes that a given nucleon moves in an eective attractive potential created by

the presence of all other nucleons in the nucleus. Although realistically, due to the short-range

nature of this interaction, the potential can be approximated by the mean eld produced by only the

nearest neighboring nucleons. Protons and neutrons are almost identical in term of their nuclear

interactions, but the net positive charge of the proton means introduces an electrostatic interaction

as well, as illustrated in Figure 4.14.

Woods-Saxon Potential

While the negatively-charged electrons in an atom are bound to the positively-charged nucleus

exclusively by an attractive, long-range Coulomb potential  () , the Woods-Saxon potential

describes the interaction for a single nucleon with the mean eld produced by the nucleus and can

be written as

 () =  () + () ℓ ·  + (), (4.10)

where  () =   () is the spin-independent, central Woods-Saxon potential. The average

proton-neutron potential is stronger than the average proton-proton or neutron-neutron potential.
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Figure 4.14: Eective interaction potentials seen by the proton and neutron as a function of the
distance between the nucleon and the nucleus. The eect of alignment between spin and orbital
angular momentum on the potential is also shown. Figure credit: HyperPhysics, Georgia State
University, Carl Rod Nave.

Thus, for protons

 =  + ( − )


1, (4.11)

and for neutrons

 =  − ( − )


1. (4.12)

The spin-orbit component of the potential  describes the coupling between the spin of the

nucleon and its orbital angular momentum:

 () = 
1


 ()


. (4.13)

In both cases, the Fermi component of these functions have the form
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 () = 1
1 + (−/) , (4.14)

while the Coulomb term in the Woods-Saxon potential describes the electrostatic interaction over

two dierent ranges with the boundary conditions

 () =



2

 ,  ≥ 

2

2


3 − 2

2



,  ≤ 

.

The radii , , and  are often expressed in terms of the mass number  =  
1/3.

One can usually assume  =  = 1.25 fm and similarly for the “surface thickness” of the

nucleus  =  = 0.65 fm. However, the Coulomb radius  = 1.20 fm is a bit smaller. The

interaction strengths 0, 1, and  determine the depth of the potential well, and as with all the

other numerical constants, they can vary depending on the region of the nuclear chart.

Nuclear Orbitals and Shell Structure

Solving the Schrödinger equation for the Woods-Saxon potential with the addition of spin-orbit

coupling results in a set of quantized energy levels as depicted in Figure 4.15, which compares this

more realistic model to the relatively simple solution for the isotropic harmonic oscillator potential

 () = 22/2. These nuclear orbitals are denoted by the combination of quantum numbers ℓ

that dene a state. The principle quantum number  species the number of nodes in the wave

function, ℓ is the orbital angular momentum, and  is the total angular momentum. Thus, the 1

orbital, for example, has ℓ = 0 and can only contain two nucleons of the same type. Since the total

angular momentum is  = 1/2, within a pair of identical fermions, if one is spin-up (  = +1/2),
the other must be spin-down (  = −1/2). Furthermore, the 1 orbital, with its ℓ = 1, can hold up

to six identical particles: two in the 11/2 state (  = 1/2;  = ±1/2) and four in the 13/2 state

(  = 3/2;  = ±3/2,±1/2).
Unlike in atomic theory, nuclear shells do not strictly correspond to the specic quantum

numbers of their orbitals. Instead, shells represent clusters of nuclear orbitals which are separated
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Figure 4.15: Neutron single-particles states in 208Pb using three dierent potentials. The addition
of each term further breaks the level degeneracy. Bracketed numbers indicate the number of
neutrons contained in each orbital, while the following number is the running sum total. Figure
credit: Ref. [1].
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Figure 4.16: Deviation in neutron separation energy plotted as a function of neutron number,
where the line at zero represents expected binding energy according to the semi-empirical mass
formula. Figure credit: HyperPhysics, Georgia State University, Carl Rod Nave.

by large gaps in energy as shown in Figure 4.15. While the -shell is just the 11/2 orbital and the

-shell only contains the 13/2 and 11/2 orbitals, the -shell is comprised of the 15/2, 21/2,

and 13/2 orbitals; the clustering of orbitals with dierent quantum numbers only becomes more

complicated as the number of nucleons increases. The magic numbers correspond to the total

number of nucleons needed to ll the nuclear shells. As depicted in Figure 4.16, the fact that

the energy required to remove a neutron from the nucleus peaks at shell closures then drops o

dramatically with the addition of extra neutron, provides strong experimental evidence for shell

model theory.

In addition to this, the shell model can predict the spin and parity of the ground state for a given

nucleus. For example, in the case of 30P, both its 15 protons and its 15 neutrons ll their respective

1, 1, and 1 orbitals. This leaves the remaining proton and neutron in their 2 orbitals. Thus,

we can think of the 30P nucleus as an inert core consisting of 14 protons and 14 neutrons with two

extra valence nucleons, each with spin  = 1/2. The inert core has a total angular momentum of

 = 0 since it lls the 15/2 orbital, and the sum total angular momentum of the valence nucleons

is  = 1. Because the 2 orbital is an ℓ = 0 level and since Π = (−1)ℓ, this means the parity of the
30P ground state is positive, which agrees with the observation that  = 1+.

While the shellmodel allows us to infer ground state spin-parity from the properties of individual
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valence nucleons, this is not trivial for excited states. However, the existence ofmirror nuclei allows

us to deduce information about the level structure of a nucleus with mass number , proton number

1, and neutron number 1 from a dierent nuclide with mass number  but for which the proton

number is 2 = 1 and the neutron number is 2 = 1. Due to their symmetry, the excited states

in one mirror nucleus can often be matched to an analogous state in the other mirror nucleus, and

assuming we know the properties of one mirror state, we can assign spin and parity to the other

mirror state. This reects a useful property of the nucleus called isospin.

Isospin Mixing

The isospin model proposes that because the proton and neutron are nearly identical, instead of

treating them as distinct nucleons, they can be understood as projections in isospin space of a single

nucleonic particle. This isospin doublet still has spin  = 1/2, but in addition, it also possesses

isospin = 1/2, the projections of which correspond to = +1/2 for the neutron and = −1/2 for
the proton. The total isospin projection of a particular nuclide can be expressed as  = ( − )/2,
which is the same across all excited states of that nucleus. However, each nuclear level will not

have the same total isospin  . The isospin model is formulated similarly to angular momentum in

the sense that for a given total isospin  there will be 2 + 1 projections spanning − <  <  .

Thus, the analogous levels in mirror nuclei can be thought of as nearly identical states with the

same spin-parity and quantum number  but with dierent projections in isospin space; these are

called isobaric analog states (IAS).

Of course, protons and neutrons are not identical particles, and the dierence in the strength

of the Coulomb interaction between mirror nuclei perturbs the energy level spacing between the

nuclides. In addition to this, Coulombic perturbations can result in isospin mixing between nearby

states of the same spin and parity. In the simple case of two-level mixing, the quantum states |1⟩
and |2⟩ can be written as a linear combination of isospin basis states:

|1⟩ = cos  |1⟩ + sin  |2⟩ (4.15)
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|2⟩ = − sin  |1⟩ + cos  |2⟩ (4.16)

If the energy dierence between two levels is large, the amount of mixing between then will be

negligible. The mixing angle  is given by the relation

tan 2 =
2


, (4.17)

where  is the mixing matrix element and  is the unperturbed energy dierence between the

original states. The relationship between these two quantities and the observed (perturbed) level

spacing is given by  =
√
2 + 42.

Using  decay measurements, the extent of this mixing can sometimes be determined from

experimental observables. If the  decay proceeds via a Fermi transition, the emitted −-̄ or

+- pair will have antiparallel spins, such that the total angular momentum of the nucleus is

unchanged (Δ  = 0), and similarly, parity is also conserved (Δ = 0). Typically, Fermi decays

of a radioactive parent nucleus will only populate its IAS in the daughter nucleus, but if isospin

mixing occurs between its IAS and another state, the Fermi transition strength () to the nearby

level will be nonzero. The transition strengths of two states (1 and 2) can be deduced from the

-feeding intensities, and their ratio is related to the mixing angle:

 = tan  =


2
1

. (4.18)

This allows us to write the unperturbed energy spacing as

 = 
1 − 2

1 + 2 , (4.19)

and the unperturbed mixing matrix element becomes

 = 


1 + 2 . (4.20)
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USDC Model Calculations

In Mayer and Jensen’s original formulation, they assumed each nuclear level corresponded to a

single valence nucleon in a single-particle orbit around an inert core at shell closure. We now

know that the nucleus is much more complicated than this and that the collective behavior of

quantum many-body interactions is necessary to accurately described the properties of nuclear

excitations. Modern shell-model calculations must incorporate many multinucleon congurations

as a consequence of the fact that valence nucleons can occupy multiple, partially lled, single-

particle states simultaneously [151]. This requires extensive numerical computation in order

to predict experimental observables, and even still, the valence space must often be truncated

simply due to the sheer number of possible conguration-interactions. Nevertheless, the shell

model remains an extremely useful tool for predicting excitation energies, spin-parity assignment,

multipole moments, and matrix elements between nuclear levels.

In order to perform these calculations, a Hamiltonian is needed to describe the conguration-

interactions within the valence space. Nearly 40 years ago, the “universal -shell” (USD) Hamil-

tonian was proposed to account for the wide variety of observed phenomena in the level structure

of nuclides with mass numbers  = 17 − 39 and has since provided realistic -shell wave func-

tions for this region of the nuclear chart [152]. In 2006, its successors USDA and USDB were

introduced using an updated and expanded set of nuclear levels [153; 154]. Recently, several new

isospin-breaking, USD-type Hamiltonians have been developed, including USDC [155], which we

used to evaluate the  decay width Γ for the 6390-keV level in 31S.

For the USDC Hamiltonian, the strongest isospin mixing with the IAS for the 31Cl ground state

comes from a  = 1/2 level in 31S, which the shell model predicts to be 300 keV below the  = 3/2
IAS. The isospin-mixing matrix element for these levels theory = 36 keV is in good agreement

with the experimental value exp = 41(1) keV [155]. Theory predicts -decay widths of 190 meV

for the  = 1/2 state and 920 meV for the  = 3/2 state. However, the observed  = 1/2 state,

corresponding to the 6390-keV level in 31S, lies above the  = 3/2 IAS at 6279 keV. The mixing of

these two states depends on the energy dierence between them, which is determined by the strong
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Figure 4.17: A comparison of experimental and theoretical values of the M1 matrix elements for
magnetic dipole transitions. Figure credit: Ref. [154].

interaction. Adding a term in the Hamiltonian, which is proportional to the ̂2 operator, moves

the  = 1/2 state up by 410 keV. After this shift, the new partial widths are Γ6390
 = 490 meV and

ΓIAS
 = 430 meV. The sum of these two widths is not exactly the same due to interference from

other  = 1/2 states that do not demonstrate strong isospin mixing.

There are two primary sources of systematic uncertainty associated with calculating Γ theo-

retically. The rst comes from the choice of the USD Hamiltonian. By comparing results from the

four dierent Hamiltonians derived in Ref. [155], we assume this uncertainty in Γ between the

models is relatively small, at about 50 meV. The second source of error in this calculation arises
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from the uncertainty in the matrix element of the magnetic dipole (M1) transition.  decay of the

 = 1/2 state is dominated by a 66% branch to the lowest  = 5/2+ state with an M1 transition

strength of (1) = 0.482 , where  = ℏ/2 is the nuclear magneton. The M1 decay matrix

element is  =

(2 + 1)(M1) = 1.38 . Comparing to other experimental values of  , as

shown in Figure 4.17 taken from Ref. [154], we adopt a systematic uncertainty of ≈ 0.4 . This

ultimately leads to a total uncertainty of 280 meV. Thus, we can combine Prof. Alex Brown’s shell-

model calculations for Γ = 490(280) meV and our experimentally determined proton branching

ratio Γ/Γ = 2.5+0.4−0.3 × 10−4 with the known angular momentum information  = 3/2,  = 1/2,
and  = 1 for the resonance, proton, and target nucleus, respectively. Using our denition of the

resonance strength

 ≡ (2 + 1)
(2 + 1) (2 + 1)

ΓΓ

Γ
, (4.21)

we computed a nal value of  = 80(48) eV for the crucial 260-keV resonance of interest.

Resonant Contributions

The most important resonances that contribute to the total thermonuclear rate typically fall within

±Δ/2 of the Gamow peak as calculated using Eqs. 2.11 and 2.14. For a peak nova temperature of

 = 0.31GK, this corresponds to resonance energies 0±Δ/2 = 337±110 keV for the 30P(, )31S

reaction. There have been many experiments dedicated to the study of proton-unbound states in
31S over this resonance energy range. We believe most of the key resonances within the Gamow

window have been experimentally observed, but the nuclear dataset remains incomplete for many of

these states. For example, the spin-parity assignments for several high-spin states remain tentative,

and certain measurements of spectroscopic factors provide only upper limits. Here, we review

the resonance strengths reported in literature as summarized nicely by Kankainen et al. [104].

Finally, we are able to calculate a total thermonuclear rate for 30P(, )31S using the individual

contributions of nine narrow, isolated resonances based on the available experimental information

complemented by theoretical evaluations.
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Calculating Proton Partial Widths

For states with known spin-parity and well-constrained spectroscopic factors, it is possible to

calculate proton partial widths with reasonable accuracy. The analytical approximation can be

expressed as

Γ = 2
ℏ2

2
 (2)2sp, (4.22)

where  is the penetration factor, 2 is the spectroscopic factor, and 2sp is the dimensionless

single-particle reduced width [15]. The interaction radius is  = 1.25(1/3
 +1/3

 ) fm and depends

on the mass of the proton  and target nucleus  in atomic mass units. The penetration factor is

the probability that a single proton will penetrate the Coulomb and centrifugal barriers and is given

by

 =


2
 + 2



, (4.23)

where  =

2/ℏ is the wave number, while  and  represent the regular and irregular

Coulomb wave functions, respectively, evaluated at the interaction boundary [156]. To compute

these wave functions, we use the GNU Scientic Library’s numerical calculation.

The dimensionless quantity for the single-particle reduced width is related to the probability

that the single nucleon, the proton in our case, will appear at the boundary. We calculate this value

using the summation

2sp =
2∑
, 

,    , (4.24)

where here, ,  are parameters given by Illiadis in Ref. [156], who arrives at these values by tting

angular distribution data as a function of bombardment energy for protons scattered on various

target nuclei. More formal values calculated from an R-matrix formula are reported by Ref. [157],

but these results agree with Illiadis’s values, as well as with shell-model calculations, to within
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about 10% on average. Thus, we assign a 10% systematic uncertainty to the single-particle reduced

width Γ = Γ/2.

Lastly, the spectroscopic factor 2 represents the probability that the nucleons involved in the

reaction will arrange themselves in a conguration that corresponds to the nal compound state.

This value can often be measured via single-nucleon transfer reaction experiments, but many times

we must rely on shell-model calculations of 2, which have their own associated uncertainties.

The 6159-keV Level

Ref. [104] reports a spectroscopic factor 2 = 0.036(13) for this  = 7/2(−) state. Because this
resonance has such an extremely low resonance energy ( = 28 keV) and a relatively high angular

momentum transfer, it does not contribute substantially to the overall rate at peak nova temperatures.

However, for completeness, we calculated this state’s proton partial width to determine its resonance

strength and found that it could be potentially dominant at low temperatures ( < 0.02 GK).

Any resonances below this excitation energy are excluded from the calculation because their

contributions are assumed to be negligible.

The 6255-keV Level

This 31S excited is known to be an ℓ = 0 resonance state with spin-parity  = 1/2+ and a

resonance energy of 124 keV. Ref. [104] reports an upper limit on the spectroscopic factor for this

resonance 2 ≤ 0.19 and references Brown et al., whose shell-model calculations predict a value

of 1.7 × 10−3 [158]. While this resonance lies just below the Gamow window at  = 0.4 GK,

this relatively weak resonance could contribute to the total rate at lower temperatures ( < 0.15

GK). For this reason, we include it in our total thermonuclear rate calculation, adopting Brown’s

theoretical resonance strength  = 9.5 × 10−12, with a factor of two uncertainty.
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The 6279-keV Level

The nuclear level at 6279 keV in 31S was rst denitively identied as the IAS of the ground state in
31Cl in Ref. [117]. Thus, it is strongly populated by 31Cl + decay, but because this state has isospin

 = 3/2, it should not contribute to the total 30P(, )31S reaction rate due to isospin conservation.

However, Ref. [121] provides evidence of isospin mixing between the IAS and the 6390-keV level.

Theory predicts the energies of these states should be higher than observed, but by shifting down the

excitation energies such that the dierence between the levels agrees with experiment, we can use

the USDC Hamiltonian to calculate the spectroscopic factor 2 = 0.0036+0.0036−0.0018 for the 6279-keV

state. Using Equation 4.22, we can compute the proton partial width Γ and thus constrain the

resonance strength.

The 6327-keV Level

In the case of this excited state, calculating the resonance strength is straightforward. The spin-parity

is known to be  = 3/2− [111]. Ref. [104] reports a spectroscopic factor of 2 = 0.023(12).
Thus, we can simply calculate this resonance’s contribution to the total thermonuclear rate using

our analytical approximation for the proton decay partial width.

The 6357-keV Level

The -ray angular distribution data suggests this state has spin  = 5/2 [111]. The fact that this state
is not populated in  decay indicates negative parity [121], so we adopt  = 5/2(−) . Ref. [104]
only reports an upper limit on the level’s spectroscopic factor and thus on its resonance strength.

For this reason, we exclude it from our total thermonuclear rate calculation.

The 6377-keV Level

Similarly to the 6327-keV level, the spin and parity of resonance are known to be  = 9/2− [111].

Its spectroscopic factor was measured to be 2 = 0.051(17) [104]. We use this information to
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calculate a resonance strength.

The 6390-keV Level

The importance of this level has been discussed at length previously and is the central topic of this

dissertation. It is noteworthy that Ref. [104] only reports an upper limit on the spectroscopic factor

for this state, demonstrating the unique sensitivity of our measurement. Our newly constrained

resonance strength is ≈ 3 times larger than the previous theoretical evaluation provided in Ref.

[121].

The 6393-keV Level

The 6393-keV level is another relatively simple case because its spectroscopic factor has been

measured 2 = 0.007(3). Ref. [104] reports this as a  = 5/2(+) state, implying it is an ℓ = 2

resonance. We calculate its contribution to the total rate.

The 6394-keV Level

Ref. [104] only reports an upper limit on this state’s spectroscopic factor 2 ≤ 0.002, which is

already quite small. This high-spin  = 11/2+ state [111] is unlikely to contribute to the total

thermonuclear rate, so we exclude it from our total rate calculation.

The 6402-keV Level

Evidence of the existence of a 6402-keV excited state from a 32S(, )31S reaction experiment was

reported in Ref. [103], which tentatively assigns this state a spin of  = (7/2). Beyond this, there

is little experimental information on this candidate state in the literature, and it may not even exist.

For this reason, we exclude it from total rate calculation.
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The 6542-keV Level

The spin-parity assignment of the 6542-keV level is ambiguous, but Kankainen et al. adopts

 = 7/2+ from Ref. [107]. Deuteron angular distribution data is t well with ℓ = 4, 5, 6 transfers,

and thus, the state is potentially consistent with  = (7/2+, 9/2−, 11/2+) [99]. Ref. [104] sets an
upper limit on the spectroscopic factor and resonance strength. While this resonance is likely not

important for ONe nova nucleonsynthesis, it could play a role at higher temperatures.

The 6583-keV Level

This resonance has a tentative spin-parity assignment  = (5/2, 7/2)− [111]. Ref. [104] reports

an upper limit on the spectroscopic factor and assumes ℓ = 3 but does not include an upper limit

on the resonance strength. Because of the large angular momentum transfer and position in the

Gamow window, this resonance is unlikely to contribute substantially to the total thermonuclear

rate. For theses reasons, we ignore proton capture on this level.

The 6636-keV Level

Most literature for this state assigns a spin-parity of  = 9/2−. This is consistent with deuteron

angular distribution data from a 32S(, )31S reaction experiment, which aret reasonablywell with

 = 7/2+, 9/2±, 11/2+ assignments [99]. No spectroscopic information is found in literature other

than the arbitrary 2 = 0.02 according to Ref. [105]. Because of the large angular momentum

transfer and the unknown spectroscopic factor, we choose to neglect this resonance.

The 6720-keV Level

This level is tentatively a  = (5/2) state. Due to a lack of other experimental information on this

level, we refer to Ref. [158] for a theoretical calculation of the resonance strength. Uncertainties

associated with this resonance strength are assumed to be a factor of two. Due to its relatively high
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energy, this resonance likely does not contribute substantially to the 30P(, )31S rate at peak nova

temperatures. However, it could play a role at higher temperatures.

The 6749-keV Level

Aswith the previous resonance, a spectroscopic factor has not beenmeasured, and its high excitation

energy suggests it does not play an important role in the reaction of interest at lower temperatures.

Still, it is a  = 3/2+ state, making the ℓ = 0 potentially dominant at higher energies  > 0.4 GK.

Again, we refer to Ref. [158] for a theoretical evaluation. All known states above this level fall well

beyond the Gamow window for this reaction at nova temperatures and are assumed to be irrelevant.

Total Rate Summed Over All Resonances

A new thermonuclear rate for 30P(, )31S was computed using Equation 2.18. The resonances’

properties, including their adopted strengths for this calculation, are tabulated in 4.1. The total rate

and its contributions from each individual resonance are plotted in Figure 4.18; this excludes the

very weak, low-energy 28-keV resonance whose contribution to the total rate is not visible on the

scale of this plot. Figure 4.18 clearly shows that the 260-keV,  = 3/2+ resonance at the heart of

this work dominates this reaction rate at temperatures  > 0.15 GK.

Hauser-Feshbach Statistical Model

In the case of most of the nuclear reactions which are relevant for understanding stellar nucle-

osynthesis, insucient experimental information prevents the total thermonuclear rate from being

calculated on the basis of individual resonances alone. For this reason, the Hauser-Feshbach

statistical model is often employed as an approximation method, and to date, most nova model

simulations have relied on it to evaluate the 30P(, )31S rate. Originally developed in 1952 for cal-

culating the total and dierential cross sections of inelastic neutron scattering, the model assumes

that the compound nucleus in question is suciently excited that the nuclear levels can be treated
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 (keV)  (keV)  2  (eV)

6158.5(5) 27.9(6) 7/2(−) 0.0036(13) [104] 1.1(4) × 10−33

6255.3(5) 124.7(6) 1/2+ ≤ 0.19 [104] 9.5 × 10−12 [158]

6279.0(6) 148.4(6) 3/2+ 0.0036+0.0036−0.0018 2.1+2.1−1.1 × 10−9

6327.0(5) 196.4(6) 3/2− 0.023(12) [104] 5.1(27) × 10−7

6357.3(2) 226.7(3) 5/2(−) ≤ 0.011 [104] ≤ 1.4 × 10−6 [104]

6376.9(4) 246.3(5) 9/2− 0.051(17) [104] 6.1(21) × 10−8

6390.2(7) 259.6(7) 3/2+ 0.016+16−8 8.0(48) × 10−5

6392.5(2) 261.9(3) 5/2(+) 0.007(3) [104] 5.8(25) × 10−7

6394.2(2) 263.6(3) 11/2+ ≤ 0.002 [104] —

6402(2) 271.4(20) — — —

6541.9(4) 411.3(5) 7/2+ ≤ 5.9 × 10−3 [104] ≤ 1.7 × 10−4 [104]

6583.1(20) 452.5(20) (7/2) ≤ 0.007 [104] —

6636.1(7) 505.5(7) 9/2− — —

6720 589 (5/2) 0.081 [158] 0.072+0.0720.036 [158]

6749 618 3/2+ 4.5 × 10−3 [158] 0.2+0.2−0.1 [158]

Table 4.1: All resonances near the Gamow window for 30P(, )31S at nova temperatures. We
adopt all measured values reported in Ref. [104] whenever possible. In the case of insucient
experimental information, we appeal to theoretical evaluation, excluding only resonances for
which spectroscopic factors are unknown and likely do not contribute substantially to the total rate
due to a large centrifugal barrier.

statistically [159]. Using input parameters such as level density and transmission coecients, a

cross section can be calculated for many resonances and averaged over the whole energy region.

While this method is usually reliable within a factor of 2− 3 for proton capture reactions, this is

only true if the density of states is high enough such that the level structure can be approximated as

a continuum. The largest uncertainties associated with this statistical model arise from the nuclear

level density and transmission coecients. For many cases, especially near shell closures and the

drip lines, radiative capture into narrow, isolated resonances must be considered individually. The
30P(, )31S reaction is expected to be near the edge of applicability for the Hauser-Feshbach model
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Figure 4.18: Individual resonances contributions and their sum total thermonuclear rate for the
30P(, )31S over peak nova temperatures.

because the level density within the Gamow window at nova temperatures is relatively low.

Using the non-smoker code [160], Rauscher and Thielemann report their calculations of a

variety of reaction types and their inverse reactions for target nuclei with 10 ≥  ≥ 83 performed

over a grid of 24 temperatures  = 0.1 − 10.0 GK [161]. For easy evaluation of any astrophysical

rate within a given temperature range, the results of the formal theoretical calculations were t with

the highly parameterized numerical formula

⟨⟩ = exp(0 + 1
−1
9 + 2

−1/3
9 + 3

1/3
9 + 49 + 5

5/3
9 + 6 ln9), (4.25)

where the free parameters 0−6 are tabulated for all reactions of interest and 9 is the temperature

in GK units. Ref. [161] also tabulates partition functions for all nuclei provided, in order to

account for the eect of nuclear reactions involving radiative capture to excited states on the total

thermonuclear rate. In the case of 30P, this eect only becomes relevant at  > 1 GK, well above

peak nova temperatures. We used the functional form provided in Equation 4.25 to evaluate the

thermonuclear rate of 30P(, )31S across peak nova temperatures and compared our experimentally
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Figure 4.19: Ratio of thermonuclear rates for the 30P(, )31S reaction comparing the narrow
resonances model to the Hauser-Feshbach statistical method. The solid curve represents the
recommended central value of the narrow resonance model, while its upper and lower limits are
plotted as dashed curves.

constrained resonant reaction calculation to the Hauser-Feshbach statistical method. Figure 4.19

shows the ratio between two thermonuclear rate calculations, where the numerator is calculated

from the resonance strengths of individual 31S levels, and the denominator is the evaluated using

Equation 4.25. There is relatively good agreement between the two models to within about a

factor of 2 for the case of this radiative proton capture reaction at nova temperatures. However, as

Figure 4.18 shows, the  = 3/2+, 260-keV resonance is by far the largest contribution to the total
30P(, )31S rate, and the Hauser-Feshbach method should not be considered a generally reliable

approximation for thermonuclear reactions dominated by a single resonance.

4.3 Astrophysical Impact

Hydrodynamic Nova Simulations

In collaboration with Prof. Jordi José from the Departament de Física Universitat Politècnica de

Catalunya and the Institut d’Estudis Espacials deCatalunya, simulations of classical nova explosions
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were performed to investigate the eect of the newly constrained 30P(, )31S rate on the nuclear

abundances of nova ejecta. The one-dimensional, hydrodynamic code shiva was developed to

simulate nova outbursts, starting from the onset of accretion up to the mass ejection stage [47; 162].

The parallelized computer program program solves a set of dierential equations for conservation

of mass, momentum, and energy, both radiative and convective transport equations, as well as the

denition of Lagrangian velocity. The hydrodynamics model has been coupled to a network of 370

nuclear reactions involving 100 nuclear species from 1H to 40Ca. The chemical composition of the

envelope and the underlying white dwarf mass are among the most impactful input parameters in

the prediction of nova nucleosynthesis [52].

Modeling the chemical composition of the envelope is a complicated problem and requires

further investigation. Multi-dimensional simulations have now been employed to study the mixing

between the H-rich envelope with the dense outer layers of the underlying white dwarf [91; 92],

but due to computational limits, the state-of-the-art, fully hydrodynamic simulations of explosive

nucleosynthesis in classical novae are still one-dimensional. A much more detailed discussion of

modern computational hydrodynamics for astrophysical simulations can be found in Ref. [163].

The most recent shiva calculations using our new recommended rate for proton capture on 30P

assumed an a priori 50-50 mixing between the H-rich envelope and ONe white dwarf material.

This 50% value is based on observations of nova ejecta and is meant to mimic results of the complex

mixing process that should occur near the stellar surface. It reects the mean composition of the

ejecta in ONe novae, which is characterized by a “metal” content of around  = 0.5, implying the

ejected material is composed of half H/He and half heavier elements.

In addition, because of the relatively highmass number ( > 19) for the seed nuclei necessary to

activate 30P(, )31S, the reaction is only expected to be relevant for the heaviest ONe white dwarfs.

The nuclear abundances in nova ejecta were predicted for a 1.35-⊙ ONe white dwarf using the

upper and lower limits on the constrained reaction rate in addition to the central, recommended

value for the thermonuclear rate. Partial results from these simulations are shown in Table 4.2. The

chemical elements for which abundances are provided here were chosen because of their relevance
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to the aforementioned astrophysical motivation for this research. Namely, this includes identifying

the origins of certain presolar grains based on their isotopic ratios as well as the calibration of

nuclear thermometers for classical novae.

Isotopic Ratios in Candidate Nova Grains

For reference, we consider the isotopic ratios of SiC and graphite (C) grains with an inferred nova

origin tabulated in Ref. [60]. Figure 4.20 plots the ratios 12C:13C and 14N:15N observed in grain

data as well as the results from our simulations. The latest computational values for C and N

ratios are in agreement with previous 1.35-⊙ ONe nova models for 50-75% mixing fractions. At
12C:13C = 2.19+0.20−0.06, our calculations slightly underestimate measurements of the C isotopic ratios

in all candidate nova grains. Again for N, our prediction of 14N:15N = 0.547+0.003−0.029 is in agreement

with previous evaluations of classical nova explosions under the same conditions. However, our

theoretical results underpredict the observed N ratios by at least an order of magnitude in all grains

hypothesized to be of nova origin.

With respect to Si isotopic ratios, as shown in Figure 4.21, we are overpredicting 29Si and 30Si

abundances by at least an order of magnitude for all samples in this unidentied class of presolar

grains. Our results overlap with previous uncertainty bands for both (29Si:28Si) and (30Si:28Si)

predictions, which are given in units of permille (‰) deviation from Solar isotopic abundances:



 29,30Si
28Si


=

 29,30Si
28Si


÷
 29,30Si

28Si


⊙
− 1


× 1000. (4.26)

The size of our error bars due to nuclear uncertainties are signicantly reduced in comparison to past

predictions as a result of our experimental constraints on the 30P(, )31S rate. Previous simulations

yielded near-Solar isotopic ratios for 29Si:28Si, with either excesses or even slight decits as likely

possibilities. In our ONe nova ejecta, we strictly predict excesses of (29Si:28Si)= 471(8), which
actually brings us out of agreement with observational data on 29Si abundances in candidate nova

grains.
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Figure 4.20: C and N isotopic ratios, comparing grain data to previous ONe nova models for
dierent white dwarf (WD) masses as well as the most recent shiva calculations using both the
nominal STARLIB rate for 30P(, )31S and our experimentally constrained rate. All simulations
assume an intial mixing fraction of 50% between the H-rich envelope and WD material.

Similarly for 30Si, which is among the nuclides most dramatically aected by the rate of proton

capture on 30P, previous estimates on its prevalence in nova ejecta had massive uncertainties.

Abundances calculated using the lower limit of the 30P(, )31S rate were a factor of≈ 6 higher than

results produced from the nominal rate, and at the theoretical upper limit of this rate, simulations

even predicted slight decits relative to Solar [60]. At (30Si:28Si)=1.14+0.93−0.35 × 104, we can

conclusively say that ONe novae involving the most massive white dwarfs should produce enhanced
30Si:28Si ratios in their ejecta when compared to Solar abundances. While this result qualitatively

agrees with all candidate nova grains, whose 30Si:28Si ratios exceed that of the Solar System’s, we

overpredict this deviation in each case by at least a factor of 10.

To reconcile this discrepancy, some have invoked an ad hoc mixing of the processed nucle-

osynthetic material with some unspecied source of near-Solar material which dilutes the 29,30Si

excesses before the grains are able to condense. It is not clear if this can be explained by the
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Figure 4.21: Si isotopic abundances in plotted in permille deviations from Solar ratios for
29Si:28Si and 30Si:28Si.

interaction between the ejected shells and the surrounding accretion [66]. It is also possible that

ignorance of relevant details in modeling explosive nucleosynthesis, such as the mixing of the

accreted material with the outer layers of the white dwarf, prevents an accurate prediction of ejecta

composition. Still, others have suggested that these grains did not originate in classical novae at

all but came from supernovae instead [164]. Based on our ndings and the current state of the

literature, we cannot draw any denitive conclusions about the cosmic origins of the presolar grains

in question. Nevertheless, from the perspective of experimental nuclear physics, we have done our

part by substantially constraining the reaction rate uncertainties related to this issue surrounding Si

isotopic ratios.

Elemental Abundances for Nuclear Thermometers

As discussed in Chapter 2, the relative amount of dierent chemical elements in the ejecta shells

from classical nova explosions can be used to constrain the peak temperatures achieved during the
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thermonuclear runaway. In contrast to the isotopic ratios discussed in the previous section, which

compare the relative number of atomic nuclei, the elemental abundance ratios presented in Ref.

[90] are given in terms of their mass fraction relative to H. Thus, all ratios mentioned here should

be understood as comparing their proportional contributions to the total mass of the ejecta material.

Among the various abundance ratios, N:O, N:Al, O:S, S:Al, O:Na, Na:Al, O:P, and P:Al

have been identied as the most useful thermometers, due to the fact that they all exhibit a steep,

monotonic dependence on peak nova temperature. The mass fraction ratios N:O, N:Al, O:Na, and

Na:Al are robust to nuclear uncertainties in the sense that they are not particularly sensitive to the

eects of unconstrained reaction rates. However, the ratios O:S, S:Al, O:P, and P:Al reveal a strong

dependence on both temperature and the thermonuclear rate of 30P(, )31S. The ratio between the

upper and lower limits on an astronomical value is sometimes called the variation. For the N and

Na ratios, the variation of nal elemental abundance ratios over the range of nova models explored

in Ref. [90] spans factors of 5.59 − 13.4, but for S and P ratios, these factors in variation are

216 − 541. Furthermore, the eect of varying the 30P(, )31S rate between its previous upper and

lower limits resulted in factors of 3.36 – 6.44 in the uncertainty of predicted S and P ratios; our

recently constrained reaction rate reduces these uncertainties.

The peak temperature achieved during thermonuclear runaway is highly correlated with the

mass of the underlying white dwarf. Classical novae involving a 1.35-⊙ ONe white dwarf are

expected to reach peak temperatures of  = 0.312 GK, according to our model. Thus, the most

recent simulation results can be compared to the predicted mass fraction ratios in Ref. [90] for the

hottest peak temperatures. Performing more nova simulations that adopt the new recommended

rate for 30P(, )31S with smaller white dwarf masses may reduce uncertainties in the expected

elemental abundances at lower temperatures. However, any reduction in the variation of predicted

abundance ratios at lower temperatures will likely not be as substantial as this eect on modeling

the hottest novae, since proton capture on 30P is most important for nucleosynthesis involving very

massive ONe white dwarfs.

By summing the ejected mass fractions in Table 4.2 for all isotopes of a given element, we arrive
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at the elemental abundance ratios O:S = 0.86+0.12−0.04, S:Al = 15.7
+0.9
−2.2, O:P = 4.9

+0.5
−0.2, and P:Al = 2.7

+0.1
−0.3.

These ndings are in good agreement with past abundance predictions and have smaller error bars.

Overlaying our simulation results on the original plot from Downen et al., we can clearly see in

Figure 4.22 that the uncertainty in the predicted mass fractions has been reduced [90]. For some

candidate thermometers, fully hydrodynamic simulations either over- or underpredict elemental

abundance ratios when compared to post-processing calculations. The latter have the advantage

of being less computationally expensive since they merely adopt the temperature-density proles

produced from hydrodynamic models and use this as input to execute a nuclear reaction network

code for each burning zone in the nova event, but ultimately, fully hydrodynamic simulations should

provide more realistic results.

By visual inspection at peak = 0.31 GK, we estimate that the variation in the four ratios, as

predicted by the post-processing calculations, were factors of about 2 − 3 [90]. Meanwhile, our

expected variation due to the rate of 30P(, )31S is within factors of 1.1 − 1.2 for the same peak

temperature across all nova thermometers. As a consistency check and for the sake of completeness,

we note that the mass fractions O:Na and Na:Al are also in good agreement with the hydrodynamic

simulation results. However, the variations in these abundances due to nuclear uncertainties alone,

as evaluated by the post-processing calculations, were already quite small and are unaected when

varying the 30P(, )31S rate.

Unfortunately, neither Na nor P have yet been observed in ONe nova ejecta. Thus, the otherwise

prime candidates O:Na, Na:Al, O:P, and P:Al are currently useless as thermometers. However, the

presence of N, O, Al, and S have all been identied in the shells of ONe novae. In fact, the N:O and

O:S abundance ratios observed from the nova event V838 Herculis suggest its peak temperature

range is peak = 0.30 − 0.31 GK, which corresponds to a white dwarf mass of WD = 1.34 − 1.35

⊙ [90]. Therefore, we are able to directly compare our predicted abundances to the observed

mass fractions of the processed nuclear material ejected by V838 Herculis. As shown in Figure

4.23, our results are in agreement with post-processing calculations. Previous simulations slightly

overestimate the expected ratios N:Al and N:O for V838 Herculis, and since our constraints on
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Figure 4.22: Mass fraction ratios plotted as a function of peak nova temperature for all candidate
thermometers. The solid black and red lines represent predicted abundance ratios from
post-processing calculations and fully hydrodynamic simulations, respectively. The dashed lines
form error bands on these predictions as a result of independently varying the rate of relevant
nuclear reactions within their uncertainties. Green markers correspond to our simulation results,
whose error bars are approximately the size of the data point. Left column: abundance ratios for
elements observed in ONe nova shells. Right column: abundance ratios for elements that have not
yet been observed in the ejecta of ONe novae. Figure credit: Ref. [90].
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30P(, )31S do not aect these abundances, the latest shiva predictions are unable to resolve the

discrepancy. However, we do agree with observations of S:Al and O:S from V838 Herculis to the

level of one standard deviation and with substantially smaller uncertainties.
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Figure 4.23: Mass fraction ratios comparing observational nova data to theoretical predictions.
The black lines represent abundances and their uncertainties according to post-processing
calculations, while the magenta data point corresponds to our latest hydrodynamic simulation
results using the constrained 30P(, )31S rate. Top panel: Al and O abundances plotted relative to
N, where peak nova temperature increases from left to right. Bottom panel: Al and O abundances
plotted relative to S, where peak nova temperature increases from right to left. Figure credit: Ref.
[90].
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Ejected mass fraction
Nuclide () Lower limit Recommended rate Upper limit

9C 1.59 × 10−31 1.96 × 10−28 5.49 × 10−32
11C 5.64 × 10−10 6.14 × 10−10 5.84 × 10−10
12C 2.22 × 10−2 2.22 × 10−2 2.20 × 10−2
13C 1.13 × 10−2 1.01 × 10−2 1.09 × 10−2
12N 6.39 × 10−33 1.88 × 10−30 4.27 × 10−33
13N 4.33 × 10−3 4.17 × 10−3 4.66 × 10−3
14N 5.49 × 10−2 5.32 × 10−2 5.46 × 10−2
15N 1.07 × 10−1 1.10 × 10−1 1.07 × 10−1
13O 1.30 × 10−34 1.83 × 10−34 1.30 × 10−34
14O 1.13 × 10−6 3.70 × 10−6 2.12 × 10−6
15O 1.48 × 10−4 2.94 × 10−4 2.12 × 10−4
16O 6.06 × 10−3 5.95 × 10−3 6.00 × 10−3
17O 3.98 × 10−2 4.07 × 10−2 4.09 × 10−2
18O 6.63 × 10−6 6.45 × 10−6 6.67 × 10−6
23Al 2.30 × 10−34 4.90 × 10−30 2.30 × 10−34
24Al 2.40 × 10−34 2.08 × 10−25 2.40 × 10−34
25Al 2.10 × 10−31 5.36 × 10−18 7.20 × 10−32
26Al 4.56 × 10−4 4.57 × 10−4 4.53 × 10−4
27Al 3.01 × 10−3 3.02 × 10−3 3.02 × 10−3
25Si 2.50 × 10−34 3.59 × 10−33 2.50 × 10−34
26Si 2.60 × 10−34 9.44 × 10−25 2.60 × 10−34
27Si 8.22 × 10−28 1.47 × 10−18 1.48 × 10−28
28Si 3.04 × 10−2 3.10 × 10−2 3.11 × 10−2
29Si 2.34 × 10−3 2.40 × 10−3 2.42 × 10−3
30Si 2.37 × 10−2 1.38 × 10−2 9.89 × 10−3
29S 2.90 × 10−34 6.53 × 10−32 2.90 × 10−34
30S 3.00 × 10−34 6.00 × 10−27 3.00 × 10−34
31S 1.96 × 10−33 4.59 × 10−21 1.16 × 10−33
32S 4.57 × 10−2 5.33 × 10−2 5.63 × 10−2
33S 6.67 × 10−4 7.98 × 10−4 8.52 × 10−4
34S 3.00 × 10−4 3.60 × 10−4 3.86 × 10−4
35S 3.50 × 10−34 3.50 × 10−34 3.50 × 10−34
36S 3.60 × 10−34 3.60 × 10−34 3.60 × 10−34

Table 4.2: Predicted mass fractions for C, N, O, Al, Si, and S relative to the total mass ejected
(9.043 × 1027 g) during a classical nova explosion on a 1.35-⊙ ONe white dwarf. Three
dierent rates for the 30P(, )31S reaction were used to quantify the eect of this nuclear
uncertainty on isotopic and elemental abundances.
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CHAPTER 5

THE 31CL()30P DECAY SCHEME

Having achieved the primary scientic motivation of this research by measuring the proton branch-

ing ratio of the key 260-keV,  = 3/2+ resonance and interpreting its astrophysical impact, we may

now turn our attention to the higher-energy protons in our decay spectrum. Essentially all previ-

ous measurements of 31Cl -delayed proton decay assumed that these charged-particle emissions

populate the ground state of 30P. However, using the -tagging capabilities of GADGET on the

high-statistics dataset acquired during NSCL experiment 17024, we demonstrate conclusively that

many of these transitions proceed from proton-unbound states in 31S to excited states of 30P. In ad-

dition, we have identied several new -delayed proton decay transitions and present a preliminary
31Cl()30P decay scheme for the rst time.

5.1 Populating 30P Excited States

Evidence of level population above the 30P ground state was rst realized, and is perhaps most

obviously illustrated, upon plotting the  ray spectrum observed in coincidence with protons in the

region spanning 1170 − 1280 keV in our energy spectrum. Figure 5.1 clearly shows that emitted

protons are strongly populating all four of the lowest-lying excited states in 30P. For reference, the

 decay scheme for these low-lying levels is shown in Figure 5.2. By placing coincidence gates on

these observed  ray transitions, we have been able to identify previously unobserved proton peaks

that, due to their weak intensities, are otherwise obscured in the cumulative singles spectrum.

Background-Subtracted Coincidence Spectra

At least one of the  ray deexcitations for each of the four lowest excited states in 30P can be observed

in the proton-gated  singles spectrum. By placing a coincidence gate on all  events that fall

within the energy region that contains the photopeak of a 30P transition and plotting the resulting

proton spectrum, we can clearly see features emerge that are distinct from the qualitative structure
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Figure 5.1: Proton-gated  ray spectra. The legend indicates the energy range over which 
coincidences are sampled for the 1.2-MeV region (blue) and the background region (red), whose
statistics have been scaled by the ratio of counts in the proton singles spectrum within the two
gating regions. Photopeaks corresponding to 30P transitions are labeled with their  energy in keV
units. Labels of the same color indicate  transitions from the same excited state.

of the cumulative proton spectrum. In order to determine the decay energies and intensities of

these new -delayed protons, it is necessary to remove the background contribution from strong

-delayed proton decays which are in random coincidence with  rays of all energies.

The most prominent feature in the 31Cl -delayed proton spectrum is the massive peak at 1

MeV. As discussed in Chapter 4, this strong proton branch has been observed in previous + decay

experiments and was assumed to populate the 30P ground state. Furthermore, the corresponding
31S level fromwhich this proton is emitted has been observed in single-nucleon transfer and charge-

exchange reaction experiments as well and has an excitation energy of 7156 keV [101; 105; 102; 99].

By gating on this proton peak in our data and analyzing the coincident  spectrum, we were able to

determine that the 1-MeV -delayed proton decay is, in fact, a ground-state transition.

We can represent the contribution of random coincidences to the background in our -gated

proton spectra as a scaled-down version of the cumulative -delayed proton spectrum in Figure
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Figure 5.2: Level scheme for the rst four excited states in 30P. Level energy labels (black) are
given in units of keV, and transition labels (colored) represent relative intensities. All of these
transitions are observed in coincidence with -delayed proton decay events with energies between
1.1 and 1.2 MeV.
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Figure 5.3: Background-subtracted energy spectrum for -delayed protons in coincidence with
677-keV  rays emitted from the rst excited state. The four peaks were t with EMG
distributions, and the background is modeled as linear. The feature near 1 MeV shows large
statistical uctuations in each bin due to the subtraction of the largest proton peak in the spectrum;
the integral over this energy range is consistent with zero.

4.2. The scaling factor is simply the ratio between the number of 1-MeV events in -gated proton

spectrum and the number of 1-MeV protons in the total, combined spectrum. Taking the dierence

bin-by-bin between the scaled “background” spectrum and the proton spectrum that results from

gating on the  ray of interest, we can produce a background-subtracted proton spectrum for each
30P transition. These spectra are shown in Figures 5.3, 5.4, 5.5, 5.6, 5.7, and 5.8 for 31Cl -

delayed protons detected in coincidence with 677-, 709-, 1454-, 746-, 1265- and 1973-keV,  rays,

respectively.

This analysis procedure provides a very clean background-subtraction method for eliminating

accidental coincidences between protons and random  rays. However, there are also a number of

“real” coincidences that can also contribute to the background of our -gated proton spectra. In

our  ray spectra, we can think of the photopeak as corresponding to  events that deposit their full

energy in the detector. However, manymore  rays will scatter o the HPGe crystal, depositing only

a fraction of their energy in SeGA. This results in a substantial Compton background associated
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Figure 5.4: Background-subtracted energy spectrum for -delayed protons in coincidence with
709-keV  decays from the second 30P excited state to the ground state. The nine peaks were t
with EMG distributions, and the background is assumed to be constant. Several background
models were applied to ts of all spectra in order to quantify systematic uncertainty. The proton
peak above 2.4 MeV was t using dierent constraints over a smaller energy region because it
appears to be intrinsically broad.

with each  ray that spans all energies up to the photopeak. Thus, the contribution from Compton

scattering decreases at higher energies since there are fewer  rays whose partial energies are high

enough to populate this region of the spectrum. When placing a coincidence gate on  ray events

within the photopeak of a known transition, we necessarily include Compton-scattered events from

higher-energy transitions. Those higher-energy  transitions that precede the coincidence  ray of

interest in the decay scheme are real coincidences, in the sense that protons could be populating

more highly excited states before  decaying to the lower levels on which we are applying the

coincidence gate.

To account for these real coincidences, we set another coincidence gate on a “featureless” back-

ground region of the spectrum. The energy range from which we are sampling proton coincidences

with background  events should be higher in energy than the the photopeak of interest. This

ensures we avoid the Compton tail of the  decay on which we are gating. Then, we scale down

125



Figure 5.5: Background-subtracted energy spectrum for -delayed protons in coincidence with
1454-keV  decays to the 30P ground state from the third excited state. The six peaks were t with
EMG distributions, and the background is modeled as linear.

Figure 5.6: Background-subtracted energy spectrum for -delayed protons in coincidence with
746-keV  decays from the third excited state in 30P at 1454 keV to the second excited state at 709
keV. This  branch is much weaker than the 1454-keV transition to the ground state from the same
level, and the binning reects the low statistics. Again, the six peaks were t with EMG
distributions, and the background is constrained to be constant.
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Figure 5.7: Background-subtracted energy spectrum for -delayed protons in coincidence with
1265-keV  decays from the fourth excited state in 30P at 1973 keV to the second excited state at
709 keV. This is the stronger of the two  branches for this level. The three peaks were t with
EMG distributions, and the background is constrained to be constant.

this background -gated proton spectrum by the ratio between the number of counts under the

photopeak and the total number of background  counts over their respective energy ranges. We

used these two background subtraction methods for the accidental and real coincidences to quantify

the systematic uncertainty in the number of -delayed proton decays to excited states.

Some of the stronger -delayed proton decays found to be populating excited states of 30P have

been observed before and are clearly visible in the cumulative proton spectrum. However, most of

the smaller peaks are completely obscured by the much larger peaks that correspond to ground-state

transitions. In order to accurately quantify the energy and intensity of the various -delayed proton

decays in the singles spectrum, we need to determine how many of these weaker proton decays we

should expect to see in the entire dataset. We can calculate this from the integrals of the -gated,

background-subtracted proton peak ts if we also know the absolute detection eciency of SeGA

at the appropriate  ray energies.

5.2 -Ray Detection Eciency with SeGA
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Figure 5.8: Background-subtracted energy spectrum for -delayed protons in coincidence with
1973-keV  decays from the fourth 30P excited state to the ground state. Again, the three peaks
were t with EMG distributions, and the background is constrained to be constant.

A detailed decay scheme for 31Cl()31S is provided in Ref. [120]. After correcting some minor

arithmetic inconsistencies in the -delayed  intensities reported by Bennett et al., we essentially

adopted these literature values for our eciency calibration. Using these numbers and tting well-

separated, high-statistics photopeaks across most of our SeGA spectrum, we are able to determine

the relative detection probability of  rays as a function of energy. In order to extract absolute

eciencies for arbitrary  energies, we only need to evaluate the absolute detection eciency at

one, or ideally a few, intermediate energies. This allows us to normalize our relative eciency

curve with respect to these xed values.

Relative Eciency Curve

We rst identied over a dozen photopeaks corresponding to strong -delayed  ray emissions in

the proton-gated  singles spectrum depicted in Figure 4.6. In order use the  detection eciency

to calculate the expected number of -delayed proton decays to 30P excited states that should appear

in the singles spectrum of Figure 4.2, we must ensure that we only consider  events that originate

128



in the active volume of the Proton Detector when evaluating the eciency of SeGA. This is because

GADGET can only detect 31Cl -delayed proton events that occur within the Proton Detector’s

active region during the 200-ms time window when the gating grid is in its transparent mode.

SeGA, on the other hand, can detect  rays originating anywhere in the experimental vault at any

time, including from the decays of 31Cl nuclei that do not make it into the detector chamber, 31Cl

decays within the detector during the 300-ms beam implantation period, as well as 31Cl()30P

decays that result in a proton being vetoed. Thus, for the purpose of determining -delayed proton

intensities, the absolute  detection eciency must be evaluated for only the  rays that are detected

in coincidence with Proton Detector events that survive the veto condition.

We used a similar functional form to Equation 4.3 to t the  ray photopeaks in our SeGA

spectrum, but instead of utilizing an EMG distribution with a high-energy tail, as we did for

the proton peaks in order to account for the eect of -summing, we used the same asymmetric

Gaussian function but skewed in the opposite direction [165; 166]. This skew to the left is useful

for describing the low-energy tail of the photopeak, which results from imperfect charge collection

in some regions of the detector or secondary electron and bremsstrahlung escape from the active

volume [126]. The magnitude of this skew is parameterized by the quantity , which should be

independent of  energy. The prominent 1248-keV photopeak in Figure 5.9 was t using our EMG

response function, where  was allowed to be a free parameter. Since this is one of the strongest 

decays in the spectrum that is not obscured by neighboring peaks, we adopted this value of  for all

other peak ts. This yielded good ts as well as a consistent interpretation of the peak width and 

decay intensity.

Based on our knowledge of  ray spectra acquired using HPGe detectors, we assumed the width

of the photopeaks should vary smoothly with energy, such that

() = ( = 0) + 
√
. (5.1)

First, all calibration peaks were t in the spectrum allowing  to be a free parameter. After plotting

all 2-minimized values of  as a function of , we t the data using equation Equation 5.1 to
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Figure 5.9: Top panel: Fit of the second-strongest photopeak in the 31Cl -delayed  spectrum at
1248 keV. The background is modeled with a quadratic polynomial over the energy region
1220 − 1280 keV. Bottom panel: Residual plot of the dierence between the histogram’s bin
content and the value of the t as a function of  energy.

nd ( = 0) and , as shown in Figure 5.10. Then, we constrained  for each photopeak t to

conform to this energy dependence. The dierence in the peak integrals between the constrained

and unconstrained ts represented the largest source of systematic uncertainty associated with the

total number of observed counts for a given  ray transition, ranging from < 1% for high-statistics

peaks to 14% for weaker  transitions. The eciencies for each photopeak were then calculated

relative to the 1248-keV peak using the relationship

 (rel) =




1248
1248

, (5.2)

where  is the adopted -delayed  intensity for a given 31S excited state transition, and  are

the total number of counts in the photopeak; 1248 and 1248 correspond to the same values but for

the 1248-keV reference peak. Figure 5.11 plots the resulting eciency curve where all values are

given in arbitrary units relative to 1248(rel) = 1. The functional form of the curve typically used

to t eciency data can be expressed as
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Figure 5.10: Peak width plotted with respect to peak position in the  energy spectrum. The
2-minimized values of the free  parameter are t with a function proportional to the square root
of the  parameter.

ln  =
=5∑
=0

 (ln ) . (5.3)

Absolute Eciency Calibration Points

In certain cases, it is relatively straightforward to determine the absolute detection eciency at a

specic  energy. For example, in the case of 30P shown in Figure 5.2, the fourth excited state

decays to the second excited state via the 1265 transition. The decay of the second excited state

promptly follows, resulting in 709 to be emitted. In this simple decay scheme, the emission of

1265 is always followed by the 709 transition to the ground state. Thus, if we place a coincidence

gate on all 1265 events, the number of 709 decays in coincidence must be equal to the total number

of 1265 transitions, assuming perfect eciency. If these quantities are not equal, then, the ratio

between observed 709−1265 coincidences and the total number of measured 1265 events is simply
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Figure 5.11: Relative detection eciency in SeGA as a function of  energy for events in
coincidence with -delayed proton decays.

the detection eciency for 709. Expressed generally in terms of initial  and nal  transitions,

the relationship is

  =
Number of   −  coincidences observed

Total number of  events detected
. (5.4)

In order to determine absolute eciencies in this way for the 31Cl()31S decay scheme, we

must identify analogous transition sequences where two  rays are always emitted one after the

other. Of course, the rst two excited states in any level scheme will be populated by many 

transitions from higher energy levels. However, not all of these transition sequences are useful

for this method. For example, the 1248-keV  ray is emitted from the rst excited state in 31S.

According to Ref. [120], this level is populated directly by the decay of several more highly excited

states with transition energies of ranging from 946 to 5901 keV.

However, a substantial fraction of the background under lower-energy photopeaks will be

contaminated by higher-energy transitions that also populate the 1248-keV level but whose  rays

have undergone Compton scattering, depositing only some of their energy in SeGA. In addition,
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Figure 5.12: A two-dimensional histogram plotting - coincidences between the 1248- and
5030-keV transitions.

many of the higher-energy -delayed  decays are quite weak and had previously been unobserved.

Someof the corresponding photopeaks are visible in our  spectrum, but the probability of observing

both transitions independently is reduced by the product of their detection eciencies, which are

each on the order of a few percent. This makes weak  branches impractical for determining SeGA’s

absolute eciency at 1248 keV. Furthermore, some photopeaks are obscured by other nearby 

ray peaks, making the integrals extracted from their ts unreliable. Ultimately, we were able to

identify three usable  decays to the 1248-keV level with transition energies 2035, 2959, and 5030

keV; Figure 5.12 shows one example of such - coincidences.

Fitting the photopeak shown in Figure 5.13 from the proton-gated  spectrum yields the

denominator for Equation 5.4, where in this case  is the 5030-keV transition. To determine the

numerator of this ratio, we need to determine the number of instances in which the 1248- and

5030-keV  rays are detected together in coincidence. Just as we demonstrated previously with the

-gated, background-subtracted proton spectra, we can place a coincidence gate on all 5030-keV 

ray events over several widths of the photopeak and plot the resulting coincidence  rays. To account
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Figure 5.13: Fit of the 5030-keV photopeak. The integral of this peak is the total number of
5030-keV  decays populating the 1248-keV rst excited state of 31S that are detected in
coincidence with non-vetoed Proton Detector events.

for the background, we generate another  spectrum gated on coincident  rays with energies above

the 5030-keV photopeak. To estimate the contribution of random, accidental coincidences to the

1248-keV peak, we scale the background-gated  spectrum by the ratio between the number of

 events in the energy range of the photopeak gate and the number of counts in the background

gate’s range. For estimating the contribution of real, true coincidences from the Compton tails

of higher-energy transitions also populating the 1248-keV state, we scale the background-gated

 spectrum by the ratio between the number of background counts under the photopeak and the

number of  events over the energy range of the background gate.

Taking the dierence between the photopeak-gated and the scaled-down, background-gated 

spectra results in Figure 5.14. Lastly, tting the 1248-keV peak in this background-subtracted

coincidence spectrum allows us to calculate the absolute detection eciency of SeGA for this 

energy. This process was repeated for both accidental and real coincidences for three dierent 

transitions populating the 1248-keV state in order to quantify our systematic uncertainty. Combining

this with the statistical uncertainty of our median t value results we arrive at an eciency of
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Figure 5.14: Fit of the 1248-keV photopeak after background subtraction. The integral of this
peak corresponds to the number of 1248-keV  events observed in coincidence with the 5030-keV
transition that populates the rst excited state.

1248 = 0.045(5). Similarly, we applied the same analysis procedure to determine an absolute

detection eciency at 2234 keV using transitions that feed the second excited state via the emission

of 1050-, 1852-, and 2484-keV  rays. We found that the probability to detect a 2234-keV  in

coincidence with a Proton Detector event in our experiment was 2234 = 0.027(6). Fixing the

position of these two data points in place, we normalized our relative eciency curve from Figure

5.11 such that we are able to interpolate the proton- detection eciency of the GADGET system

spanning the energy range 0.7 − 7MeV.

5.3 Analyzing the Cumulative Proton Spectrum

Having determined the detection eciency of SeGA for  energies spanning 0.7 − 7 MeV, we

may now revisit the analysis of the cumulative spectrum for the higher-energy, -delayed proton

decays. Extracting the centroids from ts of the -gated, background-subtracted proton peaks

allows us to determine the positions of these weak proton branches in the cumulative energy

spectrum that combines all non-vetoed Proton Detector events. Dividing the peak areas obtained
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from the coincidence spectra ts by SeGA’s detection eciency evaluated at the relevant  energies,

we calculated the expected number of total proton counts in the combined spectrum from these

transitions. Upon xing these parameters for the distributions of smaller proton peaks, we t

the larger proton peaks in the singles spectrum, allowing their positions and intensities to be

free parameters, in order to determine their decay energies and strengths under these constraints.

This process was repeated iteratively over several energy regimes, relaxing and tightening various

t parameters for the purpose of quantifying systematic uncertainties in our model of the data.

However, in order to convert the peak positions within the histogram as determined by our ts into

real decay energies, it was necessary for us to establish a robust energy calibration that is reliable

across the entire Proton Detector spectrum.

Energy Calibration Revisited

As discussed in Chapter 4 for the calibration of the central detector pad, we relied on extrapolating

from three data points within 700 − 1100 keV when reporting our measured energy of the low-

energy, -delayed proton decay through the key  = 3/2+ resonance. We plotted the decay

energies of the calibration peaks as evaluated in literature [119] against the means of the three

Gaussian distributions used to t the corresponding peaks for the strongest -delayed proton decays

observed in our spectrum. Fitting these three points with a rst-degree polynomial provided a

reasonable energy calibration function over a relatively small range of the spectrum and yielded

a decay energy that was consistent with the hypothesis that we observed -delayed proton decay

through the 260-keV resonance of interest. However, this extrapolation results in large uncertainties

when evaluated at energies well above or below 1 MeV. We initially hesitated to incorporate more

data points from higher energies into this t because we realized that this region of the spectrum

is much more complicated than had been previously assumed. However, after careful subsequent

analysis of the proton- coincidence data for all observable 30P transitions, we have acquired amuch

more detailed understanding of the cumulative spectrum’s underlying structure, which allowed us

to produce a precise energy calibration that spans the entirety of the combined-pads spectrum.
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To begin, we returned to the three largest peaks in our spectrum peaks as a starting point for

our calibration. For the spectrum including data combined from all active pads, we cannot ignore

the eect of -summing, as the peaks are clearly not symmetrical. We used EMG distributions to

t these calibration peaks, also taking into account their small areal contributions from the much

weaker proton decays that populate excited states. Since the response function is asymmetric, we

chose to calibrate our proton energies with respect to the mode of each distribution: the location

along the x-axis of the histogram at which the peak’s t function is at its maximum value. We

determined the decay energies of all resonances in this calibration via the relation

 =  (31S) −  −  (30P), (5.5)

where  (31S) is the excitation energy of the proton-emitting level in 31S,  is the proton separation

energy of 31S, and  (30P) is the excitation energy of the 30P level populated by -delayed proton

decay.  (30P) = 0 for these rst three calibration points, since they correspond to proton decays to

the ground state. Using the evaluated level energies and their assigned uncertainties from Nuclear

Structure and Decay Data (NuDat) [167] as well as  from the latest mass evaluation [16], we

compute  = 806(2), 906(2), 1025(2) keV.1 Fitting these energies as a linear function of the our

distribution modes provides a well-constrained energy calibration within the region between these

points. However, in order to extend this calibration to higher energies, we would like to identify

protons within the energy range 806 − 1025 keV which decay from highly excited states in 31S that

also emit protons of several dierent energies.

Fortunately, we were able to identify one such proton transition populating the third excited state

of 30P, whose energy falls within the region over which our calibration is well-constrained; applying

our local energy calibration yields a decay energy of 834 keV. After tting all proton peaks in our

-gated coincidence spectra, we estimated the excitation energy of their proton-emitting levels

using Equation 5.5. In the case of the 834-keV transition,  (31S) = 834(3) + 6130.65(24) +
1Excitation energies used in the proton spectrum energy calibration are based on evaluated nuclear level energies

as reported in NuDat [167] prior the most recent update in late June 2022. Any future changes to these preliminary
values will likely reect this.
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1454.23(2) keV = 8419(3) keV. The closest level tabulated in NuDat has an excitation energy and

associated uncertainty of  = 8424(3) keV. This level has reportedly been populated in several

dierent experiments, including 31Cl -delayed proton decay measurements [117; 118; 168], with

researchers reporting a range of excitation energies. Saastamoinen et al. attributes the observation

of 2.3-MeV protons, which likely correspond to a visible peak of the same energy in our spectrum,

to the decay of a proton-unbound 31S level located at  = 8429(3). However, results from

experiments employing a high-resolution magnetic spectrometer for the reactions 31P(3He,)31S

and 32P(, )31S conclude  = 8418(5) [102] and  = 8422(2) [99], respectively. This is in

good agreement with our prediction, and we can consider our result an independent measurement

of this level’s excitation energy. Thus, we adopt the 8419-keV level for the purpose of our energy

calibration.

Gating on the proton peak near 2.3-MeV, we do not observe any evidence of coincident 

rays from 30P excited states, suggesting that these events indeed correspond to ground-state proton

transitions and likely originate from the 8419-keV level. Under this reasonable assumption, the

transition should have decay energy of  = 8419(3) - 6130.65(24) keV = 2288(3) keV. We also

identied two more relatively strong -delayed proton transitions that populate the rst and second

excited states, calculating the predicted excitation energies of their proton-emitting level in 31S.

While our preliminary, three-peak energy calibration predicted excitation energies for both proton

decays to be≈ 10 keV less than 8419 keV, this is the only conrmed statewithin 20 keV. Furthermore,

just as we saw for the case of the lowest-energy resonance in our spectrum, for which we reported

a decay energy of  = 273(10) keV, when extrapolating the three-peak energy calibration > 500

keV above or below the well-constrained energy region, a 10-keV uncertainty in decay energy is

to be expected. Thus, we believe it is reasonable to conclude that these protons are also emitted

from the 8419-keV level, with decay energies of  = 8419(3) - 6130.65(24) keV - 677.01(3) keV

= 1611(3) keV and  = 8419(3) - 6130.65(24) keV - 708.70(3) keV = 1578(3) keV. Figure 5.15

shows the combined-pads singles spectrum with the full set of proton calibration peaks labeled.

Having determined the decay energies of seven well-separated peaks across the spectrum, we
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Figure 5.15: All proton peaks used in the combined-pads energy calibration are color-coded by
the 30P levels their transitions populate directly. Visible singles peaks corresponding to ground
state transitions (black) and weaker transitions to excited states (colored) are labeled by their
center-of-mass decay energies in units of keV.

applied a revised t to the modes of the distributions modeling each of these seven peaks. Figure

5.16 shows that the Proton Detector is a good example of a proportional counter, since a linear

function ts the data extremely well over the energy range 0.8− 2.3MeV. We utilized this function

to calibrate all -delayed proton decays observed in this experiment, and all future references to

proton energies in this document reect this calibration. This application to the combined-pads

spectrum in the case of the low-energy proton peak corresponding to the astrophysically important

 = 3/2+ resonance results in a decay energy of  = 258(3) keV, which brings us into near-perfect
agreement with Ref. [121]. Furthermore, using Equation 5.5, we computed excitation energies for

the proton-emitting levels in 31S that would correspond to our observed -delayed proton decays.

In almost all cases, our expected excitation energies are consistent with the evaluated level energies

of previously observed excited states, as tabulated in NuDat to within their uncertainties. In the few

instances for which this is not the case, newly proposed -delayed proton decays are very weak,

and their status should be considered tentative.
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Figure 5.16: Linear energy calibration function mapping the peak position in the combined-pads
spectrum to proton decay energy. The peak positions are determined by the mode of EMG
distributions used to t the data. Fixed points correspond to proton decays of 31S levels with
well-known excitation energies.

Constraining Fits Below 1.2 MeV

Figure 5.17 shows one such multi-peak t over the energy region 575 − 1325 keV. What looks

like only four distinct peaks, which have all been previously observed with center-of-mass decay

energies 806, 906, 1026, and 1225 keV, actually contains data from over a dozen unique -delayed

proton transitions following 31Cl decay. The -gated coincidence spectrum in Figure 5.4 reveals

numerous weak proton branches to 30P excited states, including decays with energies of 870, 958,

1066, 1138, 1224, and 1318 keV. We determined that of these transitions, the three highest-energy

proton decays actually populated the four excited state of 30P, since they can are observed in

coincidence with both 1973- and 1265-keV  rays, as shown in Figs. 5.8 and 5.7, respectively. The

other three, lower-energy proton peaks, which are buried under the most prominent features in the

singles spectrum, are attributed to -delayed proton transitions to the 709-keV level of 30P.

The background-subtracted proton spectra in coincidence with  ray transitions from the third

excited state of 30P, as shown in Figures 5.5 and 5.6, reveal three additional -delayed proton
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Figure 5.17: Fit of the cumulative proton spectrum over 575 − 1325 keV, including 11 EMG
distributions and a linear background model. The positions of proton peaks corresponding to
decay energies of 834, 869, 958, 973, and 1066 keV have all been xed, along with their
eciency-corrected t integrals from the background-subtracted, -gated coincidence spectra.
The energies and intensities of the stronger proton branches are allowed to vary as free parameters,
allowing us to quantify the uncertainty associated with xing the intensities of smaller peaks.

emissions populating the 1454-keV level within the same region of the cumulative proton spectrum,

which correspond to center-of-mass energies of 834, 973, and 1229 keV. Since these decays are

relatively close in energy to the aforementioned weak, -delayed protons, we considered the

possibility that these were, in fact, the same transitions, populating a single 30P state of relatively

high excitation energy, which would result in real coincidences between these protons with  rays

of several dierent energies. However, we could not nd any evidence of this aside from the 1138-,

1224-, and 1318-keV decays to the 30P level at 1973 keV, as discussed previously. This was veried

by ruling out several dierent potential scenarios.

First, no  rays were observed from transitions of 30P levels above excitation energies of 1973

keV. This implies that all -delayed proton decays in our data must populate either the ground state

or one of the rst four excited states in 30P, whose  cascade has already been well-established
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[169; 170; 171; 172]. Second, if the 834/870-keV, 958/973-keV, and 1224/1229-keV protons really

correspond to the same transitions, then we should expect the number of counts observed in the

coincidence spectrum to be consistent, after correcting for  detection eciency. The 1454-keV

level in 30P primarily  decays to the ground state, but about 5% of the time, it decays to the

second excited state via emission of a 746-keV  ray. Thus, 834/870-keV and 958/973-keV protons

in coincidence with 1454-keV  rays should be 19 times more common than the same protons in

coincidence with 709-keV  rays, if they represent the same proton decays. However, the ratios

between the eciency-corrected counts are closer to ≈ 3 and ≈ 7, respectively.

If these ratios were approximately equivalent, we could not rule out the possibility that this

discrepancy reects systematic uncertainties in our background subtraction method or  detection

eciency, but the fact that these ratios dier by more than a factor of 2 suggests they should

be understood as unique transitions. Thus, in all of our cumulative spectrum over the energy

range ≈ 500 − 1400 keV, we x both the positions and eciency-corrected counts of these weak,

-delayed proton decays at energies 834, 869, 958, 973, and 1066 keV. Conversely, in all cases,

the peak positions and amplitudes of the three strongest -delayed proton decays in the spectrum

are allowed to be free parameters, since the tter should be able to reasonably determine this

information with our newly applied constraints. As in the case of previous ts, we generally

assumed a linear background model but tested other polynomials and functional forms as well.

Peak widths were constrained to be a linear function of energy across the t range.

For protons decays above 1.1 MeV in energy, we tried many ts, constraining and relaxing

the positions and intensities of all peaks in various combinations. The dierence between the

expected number of eciency-corrected counts in the 1138-keV peak, as determined from the

coincidence spectra in Figures 5.7 and 5.8, and the integral of cumulative spectrum’s best t, for

which the distribution’s area and centroid are constrained as shown Figure 5.17, yields an estimate

of the systematic uncertainty associated with using our  eciency to evaluate the weak, -delayed

proton intensities in this region. In this case, the expected number of eciency-corrected, 1138-keV

protons only account for ≈ 70% of the statistics in the total, combined spectrum, but xing the
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position of this peak in our cumulative spectrum t improves our agreement to≈ 80%. Themultiple

proton contributions to what visually appears to be a single peak at 1.2 MeV were neglected in

Figure 5.17, and for the purposes of getting a reasonable 2 value for such a highly parameterized

t, the position and intensity of this feature, as well as the much smaller 1318-keV peak, were

allowed to vary freely in most instances when tting across the energy region below 1.4 MeV.

Constraining Fits Between 1.2 and 1.4 MeV

As was the case for distinguishing the 834/870- and 958/973-keV, a similar argument can be made

for disentangling the multiple -delayed proton contributions to the substantial peak at 1.2 MeV.

Protons at 1138, 1224, and 1319 keV are clearly in coincidence with the 709-, 1973-, and 1265-keV

 rays. The simplest explanation for this is that these proton decays populate the 1973-keV state of
30P, which promptly decays to either the 709-keV level or the ground state. There are no known 

transitions from either the fourth or third excited states to the rst excited state, which means the

1218-keV protons in coincidence with the 677-keV  rays in Figure 5.3 must be populating this
30P level directly. Furthermore, only a weak, tentative, 519-keV  branch between the fourth and

third excited states has been proposed [169], and this cannot explain why there are more 1229-keV

protons in coincidence with 1454-keV  rays than with the combined statistics of 1265- and 1973-

keV  coincidences. Thus, the most reasonable conclusion is that three distinct 1.2-MeV proton

transitions populate the rst, third, and fourth excited states of 30P.

Within the energy region that spans 1.2− 1.4MeV, shown in Figure 5.18, the -delayed proton

spectrum contains two more distinct features. There appears to be some visible structure near

1.3 MeV in the cumulative spectrum, but the presence of a clear proton peak at 1319 keV only

becomes obvious when analyzing the coincidence spectra involving deexcitations from the fourth

excited state of 30P, as previously mentioned. The much more prominent peak near 1.4 MeV has

been reported by Ref. [118] but was assumed to populate the ground state. However, protons in

coincidence with 1454- and 746-keV  rays reveal that at least some of this peak’s amplitude must

originate from 1381-keV decays that populate the third excited state of 30P. Just as we analyzed
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Figure 5.18: Fit of the cumulative proton spectrum over 1175 − 1450 keV, including ve EMG
distributions and a linear background model. The positions of proton peaks corresponding to
decay energies of 1217, 1224, and 1229 keV have all been xed, along with their
eciency-corrected t integrals of the background-subtracted, -gated coincidence spectra. The
positions and intensities of the 1318- and 1381-keV proton decays are allowed to vary freely and
converge well with observations in the coincidence spectra.

the cumulative proton spectrum for energies below 1.2 MeV, we constrained our model of the data

using the information we extracted from the proton- coincidence spectra in order to t this energy

region between 1.2 and 1.4 MeV.

It is possible that, in addition to decays to excited states, -delayed protons that populate the

ground state of 30P could be contributing to the large peaks at 1.2 and 1.4 MeV as well. In order

to estimate the possible size of this eect, we rst assumed only a three-peak model, xing only

the position of a single EMG distribution for the 1.3-MeV peak, allowing the tter to determine

the energies and intensities of much larger features and assuming, just as in the previous t range,

that all decay events near 1.2 MeV can be considered part of a single proton peak. Again, we

constrained the peak widths to be linear as a function of decay energy, our skew parameter to be

constant, and the background beneath the peaks to be linear as well. The areas of the loosely
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constrained three-peak t could then be compared to the eciency-corrected t integrals of the

background-subtracted, -gated proton peaks. In this case, the expected counts calculated using

our numbers for the SeGA eciency actually overpredicted the total number of events by factors of

≈ 1.16− 1.26 for the 1.2-MeV peak, ≈ 1.66− 1.76 for the 1.3-MeV peak, and ≈ 1.16− 1.36 for the

1.4-MeV peak. Fixing the position of the highest-energy peak to a 1381-keV decay energy erased

the discrepancy between the two counting methods to within statistical uncertainty for 1319-keV

proton decays and reduced the overcounting factors for the 1.2- and 1.4-MeV peaks to ≈ 1.09−1.18
and ≈ 1.15 − 1.25, respectively. Thus, we can reasonably say that there is no need to invoke

ground-state transitions to explain the structure of this region in the proton spectrum.

Adjusting the t range for the three-peak model, while varying which parameters were xed

or free, enabled us to assess the systematic eect of our background model on the uncertainty in

our peak integrals. Furthermore, we introduced a ve-peak t, as shown in Figure 5.18, where

the positions and intensities of the 1218-, 1224-, and 1229-keV peaks are xed, to ensure that our

model is able to accurately reproduce the data for the large composite peak at 1.2 MeV. This t

agrees well with the data over the region where the response function’s parameters are heavily

constrained, and it is able to reproduce the energy to within 1 keV, as well as the peak area to

within 1% of the -gated, eciency-corrected proton counts at 1381-keV. Its assignment of the

peak position and integral to the more ambiguous region between the two larger features still agrees

with our predictions to within 10 keV and 50%, respectively. This gives us good condence in

our response function as a reasonably accurate model of the data as well as in the quality of our

eciency calibration and our ability to use it for evaluating the weak, -delayed protons intensities.

Constraining Fits Between 1.5 and 2 MeV

Continuing tomove across the cumulative decay spectrum, we encounter a regionwith what appears

to be three, broad proton peaks peaks between 1.5 and 2 MeV, shown in Figure 5.19. Again, upon

inspection of the proton- coincidence spectra, we see that there are many underlying peaks that

correspond to proton emissions populating excited states in 30P, some of which are quite intense,
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Figure 5.19: Fit of the cumulative proton spectrum over 1450 − 2050 keV, including 10 EMG
distributions and a linear background model. The positions of proton peaks corresponding to
decay energies of 1577, 1610, 1653, 1717, 1827, 1864, and 1872 keV have all been xed, along
with their eciency-corrected t integrals of the background-subtracted, -gated coincidence
spectra. The positions and intensities of the 1574-, 1759-, and 1889-keV proton decays are
allowed to vary freely, and their energies are in good agreement with previous measurements.

while others are very small. By far, the two strongest of these -delayed proton decays populate the

rst and second excited states with center-of-mass energies of 1610 and 1577 keV, respectively. At

rst glance, it might appear that a combination of these two proton decays alone might account for

the singular, massive peak visible in this region of the proton spectrum. However, after dividing the

number of counts in the -gated proton spectra by the 677- and 709-keV  detection eciencies,

respectively, xing their positions in the energy spectrum along with their total peak areas, and

applying the multi-peak t as seen in Figure 5.19, we nd that the combined intensity of both of

these decays is still about a factor of 50 too small to account for the rest of the protons in this peak.

Thus, we must conclude, that there is indeed a ground-state proton transition at 1574 keV, which

agrees with the previously reported decay energy [114; 115; 116; 173; 117; 118].

In fact, contrary to the previous spectral region we considered, none of the three biggest peaks
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between 1.5 and 2 MeV are primarily composed of proton decay events populating excited states.

This makes tting the spectrum over this energy range relatively straightforward. We can simply x

the energies and intensities of the weaker, excited-state transitions, add in literature values for the

ground-state proton decays while letting the exact positions and integrals of their peaks remain free

parameters before tting. As always, we constrain our peak shapes to vary smoothly with energy

and apply a linear model to our background, which is much more well-behaved at higher energies

and, coupled with the lower statistics, makes tting the data signicantly easier. Finally, just as

before, small branches close together in energy, such the 1864- and 1872-keV protons, should not

be considered the same decay, as they populate dierent excited states with no known  transitions

between these 30P levels.

Constraining Fits Above 2 MeV

With increasing excitation energy, fewer states are intensely populated by + decay, as expected

due to the energy dependence of the phase-space factor. This is reected generally by decreasing

intensities for 31Cl -delayed proton decays above 2 MeV, as observed in past measurements.

This trend can also be seen in our data and is exacerbated by the strong energy-dependence of

the Proton Detector’s eciency, as shown in Figure 4.13. However, while the statistics in this

relatively high-energy regime are low, we still are able to observe some structure and evidence

of a previously unobserved proton transitions. In coincidence with the 677-keV  rays, we can

clearly identify proton events at 2146 keV. This energy is consistent within the uncertainties of the

evaluated literature energies that assume a ground-state transition. For the sake of simplicity, one

would be inclined to think that the proton peak we observe in the cumulative spectrum is composed

entirely of -delayed proton events that populate the rst excited state of 30P. The t shown in

Figure 5.20 is constrained such that the integral of this peak is xed to the intensity observed in

the -gated coincidence spectrum, scaled by SeGA’s eciency at 677 keV. However, if we relax

this parameter, the 2-minimizing tter prefers a peak amplitude roughly twice the size. Thus,

we cannot currently rule out the possibility of multiple nearby proton peaks, especially since Ref.
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Figure 5.20: Fit of the cumulative proton spectrum over 1980 − 2700 keV, including three EMG
distributions and a linear background model. The positions of proton peaks corresponding to
decay energies of 2146 and 2494 keV have all been xed, along with their eciency-corrected t
integrals of the background-subtracted, -gated coincidence spectra. The positions and intensities
of the 2494-keV proton decays are allowed to vary freely.

[102] reports the existence of a 8268-keV level, which is close to the excitation energy needed for

a state which proton decays to the ground state of 30P.

We identied the strongest -delayed proton decay in this region to occur at 2290 keV, which

is close to previously reported decay energies for this ground-state transition. When applying a

variety of dierent constraints on the smaller peaks nearby, we allowed the peak position and area to

vary as free parameters. However, despite large changes in the relative intensities of other features

within the t range, the number of counts in the 2290-keV peak varied by less than 4% over all

cases. Because any proton peaks in this region will be quite broad, there is substantial overlap

between nearby distributions, and relatively small changes in the amplitude of a large peak will

have a disproportionately large eect on the relative intensities of smaller peaks in the vicinity.

For this reason, we are unable to conclusively identify the presence of a 2.4-MeV proton peak,

reportedly observed in both Ref. [117; 118]. Based on its quoted intensity and our simulation
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results for the Proton Detector eciency at this energy, we would expect to nd a distribution with

an area ≈ 3.4 times smaller than that of the neighboring 2290-keV peak. When we attempt to

enforce this condition on the tter, we substantially overpredict the data within the energy range

we expect to nd the peak. When we relax the areal parameter of this distribution, the tter

determines that the ratio of their magnitudes should be at least  9. The relatively low statistics

of this region of the spectrum and the many degrees of freedom for multi-peak distributions that

are not well-constrained leads to overtting. Therefore, a variety of models return reasonable 2

values, and our associated systematic uncertainties associated with with quantifying peaks above 2

MeV are substantially higher than at lower energies.

The last denitive proton peak we were able to identify in our -delayed proton spectrum has

a decay energy of 2494 keV. It was observed in coincidence with the 709-keV  rays, implying it

directly populates the second excited state of 30P. In the proton- coincidence spectrum, it appears

to be much broader than almost all other peak in our dataset. This could be a result of poor gain

matching at such high energies or simply a function of degrading detector resolution with energy,

but it is worth noting the relative resolution across most of the energy spectrum is reasonably stable

at 4 − 5%. Another possibility is that the corresponding 31S level, reported in Ref. [102], could

be intrinsically broad. The peak itself in the cumulative spectrum is barely visible and was not

reported in the results of previous -delayed proton measurements.

At present, we cannot draw any quantitative conclusions about the presence of -delayed proton

decays above 2.5 MeV in our spectrum. This regime appears to consist of a continually declining

backgroundwith some broad, bumpy regions of excess counts. More careful and detailed analysis is

required to provide robust upper limits on -delayed proton decays that do not constitute obviously

identiable peaks in our energy spectrum.

5.4 Preliminary Results

In the analysis discussed throughout this dissertation, we have demonstrated the capabilities of

the GADGET system to measure weak, low-energy, -delayed, charged-particles decays as well

as their -ray coincidences with high eciency and good energy resolution. In this chapter, we
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have provided the most detailed description to date of the 31Cl()30P sequence, and a tentative

decay scheme is proposed in Figure 5.21. We report denitive observations of 25 unique 31Cl

-delayed proton decay channels for decay energies below 2.5 MeV, compared to the most recent

literature evaluation that lists only 13 over that same energy range [119]. Furthermore, we claim

that 19 of these -delayed proton transitions populate excited states of 30P, none of which have been

previously reported in literature or appeared in evaluated nuclear data tables. However, it is worth

mentioning the Ref. [118] did tentatively suggest that 1.2-MeV -delayed protons could populate

the third excited state of 30P, and we have conrmed this observation. Preliminary values for all

energies and intensities measured during NSCL experiment 17024 are tabulated in Table 5.1.2

2All excitation energies listed in Table 5.1 are computed from calibrated proton decay energies, which are subject
to change. Not all unique level energies listed should be considered distinct and require further evaluation before
publication.
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Figure 5.21: Preliminary, partial decay scheme for 31Cl()30P, including only proton-unbound
levels in 31S that can result in a proton decay to a 30P excited state.

151



(c.m.) [keV] (rel) [%] (31S) [keV] (30P)
258(3) 0.069(5) 6389(4) 0
806(2) 15.4(8) 6937(2) 0
834(3) 0.10(1) 8419(3) 1454
870(18) <0.05 7709(18) 709
906(2) 6.6(4) 7037(2) 0
958(12) <0.05 7797(12) 709
973(2) 0.33(5) 8558(2) 1454
1025(2) 100(8) 7156(2) 0
1066(8) 0.20(5) 7905(8) 709
1138(4) 0.37(9) 9242(4) 1973
1218(2) 0.25(5) 8025(2) 677
1224(5) 0.31(6) 9328(5) 1973
1229(2) 1.4(3) 8814(2) 1454
1319(8) 0.61(29) 9422(8) 1973
1381(2) 0.68(18) 8966(2) 1454
1574(2) 10.8(20) 7705(2) 0
1580(3) 0.98(20) 8419(3) 709
1611(3) 2.18(45) 8419(3) 677
1653(2) 0.81(18) 9238(3) 1454
1717(3) 0.84(18) 8557(3) 709
1759(2) 2.88(55) 7889(2) 0
1822(6) 0.25(65) 9406(6) 1454
1864(8) <0.15 8672(8) 677
1872(6) 0.22(6) 8711(6) 709
1889(2) 6.9(12) 8020(2) 0
2146(4) 0.7(6) 8954(4) 677
2148(3) <0.62 8954(4) 677
2288(3) 4.0(7) 8419(3) 0
2494(7) 1.0(3) 9333(7) 709

Table 5.1: Preliminary energies and intensities of all 31Cl -delayed proton transitions, including
the excited state of origin in the 31S parent and the excited state they populate in the 30 daughter
nucleus.
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CHAPTER 6

CONCLUSIONS AND OUTLOOK

The stated goals outlined in this dissertation have been achieved over the course of this doctoral

thesis project. Our primary scientic objective was to constrain the thermonuclear rate of the
30P(, )31S reaction with the intent of reducing the nuclear physics uncertainties associated with

predicting elemental and isotopic abundance ratios in ONe nova ejecta. To do this, we developed

the new radiation detection system GADGET specically to measure weak, low-energy, 31Cl -

delayed proton decays through the crucial  = 3/2+, 6390-keV excited state of 31S.We successfully

measured the proton branching ratio Γ/Γ of this particular resonance. Combining our experimental

result with shell-model calculations for the  decay partial width Γ of this level along with past

work on other resonances, we calculated the thermonuclear rate for proton capture on 30P over

peak nova temperatures. In agreement with our original hypothesis, we demonstrated that the

contribution from this 260-keV, ℓ = 0 resonance dominates the total rate.

Our new, recommended rate was utilized in state-of-the-art hydrodynamic simulations of clas-

sical nova explosions for a 1.35-⊙ ONe white dwarf, and we compared the results of these

calculations to observed elemental abundances in the ejected shells of the V838 Herculis nova.

We found our results to be in agreement with the measured O:S and S:Al ratios, and we have

constrained these nuclear thermometers for ONe novae at a peak temperature of  = 0.31 GK. We

also compared the nova model predictions to measured isotopic ratios of presolar grains hypothe-

sized to originate in classical novae. The results of the simulations were not able to reproduce the

observed isotopic ratios, but our constrained rate for the 30P(, )31S reaction substantially reduced

uncertainties in the expected 30Si:28Si ratio for ONe nova ejecta.

In addition, we determined that our measurement of 31Cl -delayed proton decay through the

resonance of interest represents the weakest -delayed charged-particle decay ever reported for

resonances below 400 keV. Furthermore, we tentatively claim to observe a dozen new 31Cl -

delayed proton decay channels and demonstrate conclusively for the rst time that many of these
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transitions populate excited states of 30P. We have also constructed a preliminary decay scheme for
31Cl()30P.

Our future goals related to this work include nalizing the analysis of the decay 31Cl()30P.

Aside from this, we would also like to constrain the lifetime of the  = 3/2+, 6390-keV excited

state of 31S, since this is the largest remaining source of uncertainty in our resonance strength as

well as the last missing piece of experimental information for this nuclear level. A Doppler shift

lifetime experiment has been planned for this measurement. In addition, the GADGET system as

been upgraded to Phase II and is now fully operational as a time projection chamber. We also

have plans to measure the decay 20Mg()15O in order to constrain the 15O(, )19Ne reaction in

explosive He-burning for modeling type I X-ray bursts.
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